1,044 research outputs found
Integrating Engineering Data Systems for NASA Spaceflight Projects
NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities
Disgust implicated in obsessive-compulsive disorder
Psychiatric classificatory systems consider obsessions and compulsions as forms of anxiety disorder. However, the neurology of diseases associated with obsessive-compulsive symptoms suggests the involvement of fronto-striatal regions likely to be involved in the mediation of the emotion of disgust, suggesting that dysfunctions of disgust should be considered alongside anxiety in the pathogenesis of obsessive-compulsive behaviours. We therefore tested recognition of facial expressions of basic emotions (including disgust) by groups of participants with obsessive-compulsive disorder (OCD) and with Gilles de la Tourette's syndrome (GTS) with and without co-present obsessive-compulsive behaviours (GTS with OCB; GTS without OCB). A group of people suffering from panic disorder and generalized anxiety were also included in the study. Both groups with obsessive-compulsive symptoms (OCD; GTS with OCB) showed impaired recognition of facial expressions of disgust. Such problems were not evident in participants with panic disorder and generalized anxiety, or for participants with GTS without obsessions or compulsions, indicating that the deficit is closely related to the presence of obsessive-compulsive symptoms. Participants with OCD were able to assign words to emotion categories without difficulty, showing that their problem with disgust is linked to a failure to recognize this emotion in others and not a comprehension or response criterion effect. Impaired recognition of disgust is consistent with the neurology of OCD and with the idea that abnormal experience of disgust may be involved in the genesis of obsessions and compulsions
Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center
In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user
Therapeutic approach in glioblastoma multiforme with primitive neuroectodermal tumor components: case report and review of the literature
Glioblastoma multiforme (GBM) is the most common and aggressive malignant glioma that is treated with first-line therapy, using surgical resection followed by local radiotherapy and concomitant/adjuvant temozolomide (TMZ) treatment. GBM is characterised by a high local recurrence rate and a low response to therapy. Primitive neuroectodermal tumour (PNET) of the brain revealed a low local recurrence rate; however, it also exhibited a high risk of cerebrospinal fluid (CSF) dissemination. PNET is treated with surgery followed by craniospinal irradiation (CSI) and platinum-based chemotherapy in order to prevent CSF dissemination. GBM with PNET-like components (GBM/PNET) is an emerging variant of GBM, characterised by a PNET-like clinical behaviour with an increased risk of CSF dissemination; it also may benefit from platinum-based chemotherapy upfront or following failure of GBM therapy. The results presented regarding the management of GBM/PNET are based on case reports or case series, so a standard therapeutic approach for GBM/PNET is not defined, constituing a challenging diagnostic and therapeutic dilemma. In this report, a case of a recurrent GBM/PNET treated with surgical resection and radiochemotherapy as Stupp protocol, and successive platinum-based chemotherapy due to the development of leptomeningeal dissemintation and an extracranial metastasis, is discussed. A review of the main papers regarding this rare GBM variant and its therapeutic approach are also reported. In conclusion, GBM/PNET should be treated with a multimodal approach including surgery, chemoradiotherapy, and/or the early introduction of CSI and platinum-based chemotherapy upfront or at recurrence
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies
Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab
Why the idea of framework propositions cannot contribute to an understanding of delusions
One of the tasks that recent philosophy of psychiatry has taken upon itself is to extend the range of understanding to some of those aspects of psychopathology that Jaspers deemed beyond its limits. Given the fundamental difficulties of offering a literal interpretation of the contents of primary delusions, a number of alternative strategies have been put forward including regarding them as abnormal versions of framework propositions described by Wittgenstein in On Certainty. But although framework propositions share some of the apparent epistemic features of primary delusions, their role in partially constituting the sense of inquiry rules out their role in helping to understand delusions
GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine
NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks
- …
