160 research outputs found

    Leishmania-Induced IRAK-1 Inactivation Is Mediated by SHP-1 Interacting with an Evolutionarily Conserved KTIM Motif

    Get PDF
    Parasites of the Leishmania genus can rapidly alter several macrophage (MØ) signalling pathways in order to tame down the innate immune response and inflammation, therefore favouring their survival and propagation within their mammalian host. Having recently reported that Leishmania and bacterial LPS generate a significantly stronger inflammatory response in animals and phagocytes functionally deficient for the Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1), we hypothesized that Leishmania could exploit SHP-1 to inactivate key kinases involved in Toll-like receptor (TLR) signalling and innate immunity such as IL-1 receptor-associated kinase 1 (IRAK-1). Here we show that upon infection, SHP-1 rapidly binds to IRAK-1, completely inactivating its intrinsic kinase activity and any further LPS-mediated activation as well as MØ functions. We also demonstrate that the SHP-1/IRAK-1 interaction occurs via an evolutionarily conserved ITIM-like motif found in the kinase domain of IRAK-1, which we named KTIM (Kinase Tyrosyl-based Inhibitory Motif). This regulatory motif appeared in early vertebrates and is not found in any other IRAK family member. Our study additionally reveals that several other kinases (e.g. Erk1/2, IKKα/β) involved in downstream TLR signalling also bear KTIMs in their kinase domains and interact with SHP-1. We thus provide the first demonstration that a pathogen can exploit a host protein tyrosine phosphatase, namely SHP-1, to directly inactivate IRAK-1 through a generally conserved KTIM motif

    Fine Tuning of Globin Gene Expression by DNA Methylation

    Get PDF
    Expression patterns in the globin gene cluster are subject to developmental regulation in vivo. While the γ(A) and γ(G) genes are expressed in fetal liver, both are silenced in adult erythrocytes. In order to decipher the role of DNA methylation in this process, we generated a YAC transgenic mouse system that allowed us to control γ(A) methylation during development. DNA methylation causes a 20-fold repression of γ(A) both in non-erythroid and adult erythroid cells. In erythroid cells this modification works as a dominant mechanism to repress γ gene expression, probably through changes in histone acetylation that prevent the binding of erythroid transcription factors to the promoter. These studies demonstrate that DNA methylation serves as an elegant in vivo fine-tuning device for selecting appropriate genes in the globin locus. In addition, our findings provide a mechanism for understanding the high levels of γ-globin transcription seen in patients with Hereditary Persistence of Fetal Hemoglobin, and help explain why 5azaC and butyrate compounds stimulate γ-globin expression in patients with β-hemoglobinopathies

    Standard perioperative management in gastrointestinal surgery

    Get PDF
    The outcome of patients who are scheduled for gastrointestinal surgery is influenced by various factors, the most important being the age and comorbidities of the patient, the complexity of the surgical procedure and the management of postoperative recovery. To improve patient outcome, close cooperation between surgeons and anaesthesiologists (joint risk assessment) is critical. This cooperation has become increasingly important because more and more patients are being referred to surgery at an advanced age and with multiple comorbidities and because surgical procedures and multimodal treatment modalities are becoming more and more complex. The aim of this review is to provide clinicians with practical recommendations for day-to-day decision-making from a joint surgical and anaesthesiological point of view. The discussion centres on gastrointestinal surgery specifically

    Spectrin St Louis and the alpha LELY allele [letter]

    Full text link

    Erythroid and nonerythroid spectrins

    Full text link
    Recent developments have contributed important information to understanding the role of spectrins in the RBC membrane skeleton and nonerythroid cells. Many questions can now be framed, informed by structural knowledge of various spectrin subunit types and alternatively spliced variants, that previously could not have been addressed. Their solution in the coming years will likely lead to further advances with direct relevance to biology and medicine.</jats:p

    Erythroid and nonerythroid spectrins

    Full text link
    Abstract Recent developments have contributed important information to understanding the role of spectrins in the RBC membrane skeleton and nonerythroid cells. Many questions can now be framed, informed by structural knowledge of various spectrin subunit types and alternatively spliced variants, that previously could not have been addressed. Their solution in the coming years will likely lead to further advances with direct relevance to biology and medicine.</jats:p
    corecore