561 research outputs found
Recommended from our members
Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection
The convective injection and subsequent fate of the peroxides H2O2 and CH3OOH in the upper troposphere is investigated using aircraft observations from the NASA Pacific Exploratory Mission-Tropics A (PEM-Tropics A) over the South Pacific up to 12 km altitude. Fresh convective outflow is identified by high CH3I concentrations; CH3I is an excellent tracer of marine convection because of its relatively uniform marine boundary layer concentration, relatively well-defined atmospheric lifetime against photolysis, and high sensitivity of measurement. We find that mixing ratios of CH3OOH in convective outflow at 8-12 km altitude are enhanced on average by a factor of 6 relative to background, while mixing ratios of H2O2 are enhanced by less than a factor of 2. The scavenging efficiency of H2O2 in the precipitation associated with deep convection is estimated to be 55-70%. Scavenging of CH3OOH is negligible. Photolysis of convected peroxides is a major source of the HOx radical family (OH + peroxy radicals) in convective outflow. The timescale for decay of the convective enhancement of peroxides in the upper troposphere is determined using CH3I as a chemical clock and is interpreted using photochemical model calculations. Decline of CH3OOH takes place on a timescale of a 1-2 days, but the resulting HOx converts to H2O2, so H2O2 mixing ratios show no decline for ∼5 days following a convective event. The perturbation to HOx at 8-12 km altitude from deep convective injection of peroxides decays on a timescale of 2-3 days for the PEM-Tropics A conditions. Copyright 1999 by the American Geophysical Union
Recommended from our members
Photochemistry of HOx in the upper troposphere at northern midlatitudes
The factors controlling the concentrations of HOx radicals (= OH + peroxy) in the upper troposphere (8-12 km) are examined using concurrent aircraft observations of OH, HO2, H2O2, CH3OOH, and CH2O made during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) at northern midlatitudes in the fall. These observations, complemented by concurrent measurements of O3, H2O, NO, peroxyacetyl nitrate (PAN), HNO3, CH4, CO, acetone, hydrocarbons, actinic fluxes, and aerosols, allow a highly constrained mass balance analysis of HOx and of the larger chemical family HOy (= HOx + 2 H2O2 + 2 CH3OOH + HNO2 + HNO4). Observations of OH and HO2 are successfully simulated to within 40% by a diel steady state model constrained with observed H2O2 and CH3OOH. The model captures 85% of the observed HOx variance, which is driven mainly by the concentrations of NOx (= NO + NO2) and by the strength of the HOx primary sources. Exceptions to the good agreement between modeled and observed HOx are at sunrise and sunset, where the model is too low by factors of 2-5, and inside cirrus clouds, where the model is too high by factors of 1.2-2. Heterogeneous conversion of NO2 to HONO on aerosols (γNO2=10-3) during the night followed by photolysis of HONO could explain part of the discrepancy at sunrise. Heterogeneous loss of HO2 on ice crystals (γice_HO2=0.025) could explain the discrepancy in cirrus. Primary sources of HOx from O(1D)+H2O and acetone photolysis were of comparable magnitude during SONEX. The dominant sinks of HOy were OH+HO2 (NOx<50 parts per trillion by volume (pptv)) and OH+HNO4 (NOx>50 pptv). Observed H2O2 concentrations are reproduced by model calculations to within 50% if one allows in the model for heterogeneous conversion of HO2 to H2O2 on aerosols (γHO2=0.2). Observed CH3OOH concentrations are underestimated by a factor of 2 on average. Observed CH2O concentrations were usually below the 50 pptv detection limit, consistent with model results; however, frequent occurrences of high values in the observations (up to 350 pptv) are not captured by the model. These high values are correlated with high CH3OH and with cirrus clouds. Heterogeneous oxidation of CH3OH to CH2O on aerosols or ice crystals might provide an explanation (γice_CH3OH∼0.01 would be needed). Copyright 2000 by the American Geophysical Union
Recommended from our members
On the origin of tropospheric ozone and NOx over the tropical South Pacific
The budgets of ozone and nitrogen oxides (NOx = NO + NO2) in the tropical South Pacific troposphere are analyzed by photochemical point modeling of aircraft observations at 0-12 km altitude from the Pacific Exploratory Mission-Tropics A campaign flown in September-October 1996. The model reproduces the observed NO2/NO concentration ratio to within 30% and has similar success in simulating observed concentrations of peroxides (H2O2, CH3OOH), lending confidence in its use to investigate ozone chemistry. It is found that chemical production of ozone balances only half of chemical loss in the tropospheric column over the tropical South Pacific. The net loss is 1.8 x 1011 molecules cm-2 s-1. The missing source of ozone is matched by westerly transport of continental pollution into the region. Independent analysis of the regional ozone budget with a global three-dimensional model corroborates the results from the point model and reveals the importance of biomass burning emissions in South America and Africa for the ozone budget over the tropical South Pacific. In this model, biomass burning increases average ozone concentrations by 7-8 ppbv throughout the troposphere. The NOx responsible for ozone production within the South Pacific troposphere below 4 km can be largely explained by decomposition of peroxyacetylnitrate (PAN) transported into the region with biomass burning pollution at higher altitudes. Copyright 1999 by the American Geophysical Union
Recommended from our members
Sources of upper tropospheric HOx over the South Pacific Convergence Zone: A case study
Recommended from our members
OH and HO2 chemistry in the North Atlantic free troposphere
Interactions between atmospheric hydrogen oxides and aircraft nitrogen oxides determine the impact of aircraft exhaust on atmospheric chemistry. To study these interactions, the Subsonic Assessment: Ozone and Nitrogen Oxide Experiment (SONEX) assembled the most complete measurement complement to date for studying HO(x) (OH and HO2) chemistry in the free troposphere. Observed and modeled HO(x) agree on average to within experimental uncertainties (±40%). However, significant discrepancies occur as a function of NO and at solar zenith angles >70°. Some discrepancies appear to be removed by model adjustments to HO(x)-NO(x) chemistry, particularly by reducing HO2NO2 (PNA) and by including heterogeneous reactions on aerosols and cirrus clouds
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
- …
