122 research outputs found

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium

    Get PDF
    YesTumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates β-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.Cancer Research UK (CRUK Beatson Institute C596/A17196, CRUK Glasgow Centre C596/A18076 and S.Z. C596/A12935

    Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting

    Get PDF
    Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities

    Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    Get PDF
    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts

    Globular cluster systems and galaxy formation

    Full text link
    Globular clusters are compact, gravitationally bound systems of up to a million stars. The GCs in the Milky Way contain some of the oldest stars known, and provide important clues to the early formation and continuing evolution of our Galaxy. More generally, GCs are associated with galaxies of all types and masses, from low-mass dwarf galaxies to the most massive early-type galaxies which lie in the centres of massive galaxy clusters. GC systems show several properties which connect tightly with properties of their host galaxies. For example, the total mass of GCs in a system scales linearly with the dark matter halo mass of its host galaxy. Numerical simulations are at the point of being able to resolve globular cluster formation within a cosmological framework. Therefore, GCs link a range of scales, from the physics of star formation in turbulent gas clouds, to the large-scale properties of galaxies and their dark matter. In this Chapter we review some of the basic observational approaches for GC systems, some of their key observational properties, and describe how GCs provide important clues to the formation of their parent galaxies.Comment: 32 pages, 6 figures. Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.</p

    Burning forest biomass for energy: Not a source of clean energy and harmful to forest ecosystem integrity

    No full text
    The climate crisis is driven mainly by the extensive use of fossil fuels but also by the emissions from widespread deforestation and degradation, plus other factors including cement production (Mackey and Lindenmayer 2014, Masson-Delmotte et al. 2021). In response, a rapid transition toward renewable energy is underway to decarbonize economies globally (IEA 2021). Some commentators have proposed that a necessary component of this transition is to burn forest biomass for energy production, including pushing for the use of energy from forest biomass burning in the generation of hydrogen through hydrolysis, claiming this as “green hydrogen” (IRENA 2020). While the Land Use Land Use Change and Forestry (LULUCF) sector has been functioning as a net sink, there has been a significant increase in the intensification of logging in many regions (Ceccherini et al. 2020, Angelstam et al. 2021). Studies have projected a reduction in the amount of carbon stored in this sector by 2030 due to projected future increased harvest rates caused in part by greater demand for bioenergy, as well as age-class shifts in EU forests and climate change (Körner et al. 2007, Nabuurs et al. 2013, Böttcher and Graichen 2015, Jiang et al. 2020). Conversely, there can be a major turnaround in carbon accounts when there are changes in the LULUCF sector such as occurred in the Australian State of Tasmania when there was a marked reduction in wood production from natural forests (Mackey et al. 2022b). Here we argue that a major shift to using forest biomass burning for energy comes with grave risks of highly perverse outcomes, including increased CO2 emissions and negative impacts on forest integrity. A rethink of the role of forest biomass burning for energy in national decarbonization policy is therefore urgently needed. Our focus here is on naturally regenerating forests and not plantations (sensu (FAO 2018)). There is growing body of scientific evidence that burning forest biomass for energy will greatly increase the amount of carbon in the atmosphere for decades and have harmful impacts on forest integrity (Holtsmark 2013, Ter-Mikaelian et al. 2015, Searchinger et al. 2018) countering claims that forest biomass energy provides positive mitigation benefits (Favero et al. 2020, IRENA 2020). International and national policies and programs for decarbonization and forest management should be informed by a scientific understanding of the key factors determining the emissivity of burning forest biomass for energy, the role of forest ecosystems in the carbon cycle, and the climate mitigation benefits of forest protection. We first review current and projected use of and demand for forest biomass energy and then consider five critical issues which challenge commonly held views regarding the benefits of burning forest biomass for energy. Studies which conclude that logging forests for fuel results in climate benefits tend to make highly specialized assumptions that may not be met in actuality. We then examine the impacts on, and risks to, forest ecosystem integrity and some of the consequences for the conservation of forest-dependent biodiversity. We argue that a global ban on using forest biomass for industrial scale bioenergy is urgently needed given its negative effects on climate mitigation and forest integrity.Full Tex
    corecore