25,736 research outputs found
The CWKB Method of Particle Production in Periodic Potential
In this work we study the particle production in time dependent periodic
potential using the method of complex time WKB (CWKB) approximation. In the
inflationary cosmology at the end of inflationary stage, the potential becomes
time dependent as well as periodic. Reheating occurs due to particle production
by the oscillating inflaton field. Using CWKB we obtain almost identical
results on catastrophic particle production as obtained by others.Comment: 17 pages, latex, 2 figure
Recommended from our members
Investigation of Shallow Sedimentary Structure of the Anchorage Basin, Alaska, Using Simulated Annealing Inversion of Site Response
This study deals with shallow sedimentary structure of the Anchorage basin in Alaska. For this purpose, inversion of site response [SR(f)] data in the frequency range 0.5-11.0 Hz from various sites of the basin has been performed using the simulated annealing method to compute subsurface layer thickness, shear-wave velocity (beta), density, and shear-wave quality factor. The one-dimensional (1D) models for the aforementioned parameters were obtained with preset bounds on the basis of available geological information such that the L-2 norm error between the observed and computed site response attained a global minimum. Next, the spatial distribution of the important parameter beta was obtained by interpolating values yielded by the 1D models. The results indicate the presence of three distinct velocity zones as the source of spatial variation of SR(f) in the Anchorage basin. In the uppermost part of the basin, the beta values of fine-grain Quaternary sediments mainly lie in the range of 180-500 m/sec with thickness varying from 15 to 50 m. This formation overlies relatively thick (80-200 m) coarse-grain Quaternary sediments with beta values in the range of 600-900 m/sec. These two Quaternary units are, in turn, overlain on Tertiary sediments with beta > 1000 m/sec located at depths of 100 and 250 m, respectively, in the central and western side along the Knik Arm parts of the basin. The important implication of the result is that the sources of spatial variation of SR(f) in the Anchorage basin for the frequency band 0.5-11 Hz, besides in the uppermost 30 m, are found to be deeper than this depth. Thus, use of commonly considered geological formations in the depth intervals from 0 to 30 m for the ground-motion interpretation will likely yield erroneous results in the Anchorage basin.GIEnvironment and Natural Resources InstituteSchool of Engineering of the University of Alaska, AnchorageGeological Science
Periodic Orbits in Polygonal Billiards
We review some properties of periodic orbit families in polygonal billiards
and discuss in particular a sum rule that they obey. In addition, we provide
algorithms to determine periodic orbit families and present numerical results
that shed new light on the proliferation law and its variation with the genus
of the invariant surface. Finally, we deal with correlations in the length
spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure
Probing the interplay between surface and bulk states in the topological Kondo insulator SmB through conductance fluctuation spectroscopy
We present results of resistance fluctuation spectroscopy on single crystals
of the predicted Kondo topological insulator material SmB. Our measurements
show that at low temperatures, transport in this system takes place only
through surface states. The measured noise in this temperature range arises due
to Universal Conductance Fluctuations whose statistics was found to be
consistent with theoretical predictions for that of two-dimensional systems in
the Symplectic symmetry class. At higher temperatures, we find signatures of
glassy dynamics and establish that the measured noise is caused by mobility
fluctuations in the bulk. We find that, unlike the topological insulators of
the dichalcogenide family, the noise in surface and bulk conduction channels in
SmB are completely uncorrelated. Our measurements establish that at
sufficiently low temperatures, the bulk has no discernible contribution to
electrical transport in SmB making it an ideal platform for probing the
physics of topological surface states.Comment: 9 pages, 11 figure
The Complex Time WKB Approximation And Particle Production
The complex time WKB (CWKB) approximation has been an effective technique to
understand particle production in curved as well as in flat spacetime. Earlier
we obtained the standard results on particle production in time dependent gauge
in various curved spacetime. In the present work we generalize the technique of
CWKB to the equivalent problems in space dependent gauge. Using CWKB, we first
obtain the gauge invariant result for particle production in Minkowski
spacetime in strong electric field. We then carry out particle production in
de-Sitter spacetime in space dependent gauge and obtain the same result that we
obtained earlier in time dependent gauge. The results obtained for de-Sitter
spacetime has a obvious extension to particle production in black hole
spacetime. It is found that the origin of Planckian spectrum is due to repeated
reflections between the turning points. As mentioned earlier, it is now
explicitly shown that particle production is accompanied by rotation of
currents.Comment: 12 pages, Revte
- …
