127 research outputs found
Adaptation of cortical activity to sustained pressure stimulation on the fingertip
Background
Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents.
Methods
We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation.
Results
Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation.
Conclusion
These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open
Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells
Cyr61 has been reported to participate in the development and progression of various cancers; however, its role in prostate cancer (PCa) still remains poorly understood. In this study, we explored the function of Cyr61 in a series of malignant PCa cell lines, including LnCap, Du145, and PC3. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays demonstrated that Cyr61 was essential for the proliferation of PCa cells. Soft agar assay and xenograft analysis showed that downregulation of Cyr61 suppressed the tumorigenicity of Du145 cells both in vitro and in vivo. Either silencing the cellular Cyr61 by RNA interference or neutralising the endogenous Cyr61 by antibody inhibited the migration of Du145 cells. In contrast, purified protein of Cyr61 promoted the migration of LnCap cells in a dose-dependent manner. These results suggested that Cyr61 was involved in the migration of PCa cells. We also observed the accumulation of mature focal adhesion complexes associated with the impaired migration through Cyr61 downregulation. Also, further studies showed that Cyr61 regulated the level of activated Rac1 as well as its downstream targets, including phosphorylated JNK, E-cadherin, and p27kip1, which are key molecules involved in cell growth, migration, and invasion. The in vivo mouse tail vein injection experiment revealed that Cyr61 affected the metastatic capacity of Du145 cells, suggesting that Cyr61 was required for prostate tumour metastasis. Altogether, our results demonstrated that Cyr61 played an important role in the tumorigenicity and metastasis of PCa cells, which will benefit the development of therapeutic strategy for PCas
The use of otolith strontium isotopes (87Sr/86Sr) to identify nursery habitat for a threatened estuarine fish
Nursery habitats are larval or juvenile habitats that disproportionately contribute individuals to adult populations of a species. Identifying and protecting such habitats is important to species conservation, yet evaluating the relative contributions of different larval habitats to adult fish populations has proven difficult at best. Otolith geochemistry is one available tool for reconstructing previous habitat use of adult fishes during the early life history, thus facilitating the identification of nursery habitats. In this study, we compared traditional catch surveys of larval-stage longfin smelt (Spirinchus thaleichthys) occurring in habitats of different salinities to corresponding larval-stage salinity distributions of sub-adult/adult longfin smelt estimated using otolith geochemical techniques. This allowed us to evaluate the relative contribution of larvae from waters of various salinities to sub-adult/adult populations of longfin smelt. We used laser ablation MC-ICP-MS on otoliths and an empirically-derived relationship between strontium isotope ratios (87Sr/86Sr) of waters across the estuarine salinity gradient to reconstruct the larval salinity history of longfin smelt. Salinity values from the larval region of sub-adult/adult otoliths (corresponding to standard lengths of ca.10-mm) were compared to corresponding catch distribution of larval longfin smelt (≤ 10-mm) from 4 year-classes (1999, 2000, 2003 and 2006) in the San Francisco Estuary spanning a period when the population underwent a dramatic decline. Though the catch distribution of larval-stage longfin smelt was centered around 4-ppt and did not vary significantly among years, salinity distributions of sub-adult/adult were lower and narrower (ca. 2-ppt), suggesting that low-salinity habitats disproportionally contributed more recruits relative to both freshwater and brackish water habitats and, therefore, may function as important nursery areas. Furthermore, the relative importance of the low salinity zone (ca. 2-ppt) to successful recruitment appeared greatest in years following the longfin smelt population decline. Our results indicate that otolith strontium isotopes (87Sr/86Sr) are a powerful tool for identifying nursery habitats for estuarine fishes
Intervening with Urinary Tract Infections Using Anti-Adhesives Based on the Crystal Structure of the FimH–Oligomannose-3 Complex
Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and alpha3beta1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections.We demonstrate that alpha-D-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl alpha-D-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl alpha-D-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl alpha-D-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Man alpha1,3Man beta1,4GlcNAc beta1,4GlcNAc in an extended binding site. The interactions along the alpha1,3 glycosidic bond and the first beta1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl alpha-D-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group.The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection
Mechanisms of Intramolecular Communication in a Hyperthermophilic Acylaminoacyl Peptidase: A Molecular Dynamics Investigation
Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface
An examination of multiple factors affecting community structure in an aquatic amphibian community
The potential effects of multiple factors structuring certain larval amphibian communities were studied using a pen experiment in a natural pond. Potential factors (predation and competition from other species) were allowed to act in a stepwise fashion such that their relative importance could be evaluated. Based on a previous study, it was hypothesized that predation by Ambystoma salamander larvae on other larval amphibian species would be the most important factor. Survival of Ambystoma jeffersonianum salamander larvae and Rana sylvatica tadpoles was significantly depressed only by Ambystoma opacum predation. Survival of Ambystoma maculatum salamander larvae was significantly greater in the absence of both A. opacum and A. jeffersonianum predators. The virtual elimination of Hyla chrysoscelis larvae in all treatments also can be largely attributed to Ambystoma predation. Thus, Ambystoma predation was the dominant factor determining larval survival of four amphibian prey species in the experimental communities.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47785/1/442_2004_Article_BF00324643.pd
Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)
Seizure Occurrence Following Nonoptimal Anticonvulsant Medication Management During the Transition Into the Hospital
On the chirality of the cystine disulfide group: Assignment of helical sense in a model compound with a dihedral angle greater than ninety degrees using NMR. and CD
- …
