2,396 research outputs found
Behavioral testing and preliminary analysis of the hamster visual system
The dependence of visual orienting ability in hamsters on the axonal projections from retina to midbrain tectum provides experimenters with a good model for assessing the functional regeneration of this central nervous system axonal pathway. For reliable testing of this behavior, male animals at least 10-12 weeks old are prepared by regular pretesting, with all procedures carried out during the less active portion of the daily activity cycle. Using a sunflower seed attached to a small black ball held at the end of a stiff wire, and avoiding whisker contact, turning movements toward visual stimuli are video recorded from above. Because at the eye level, the nasal-most 30° of the visual field can be seen by both the eyes, this part of the field is avoided in assessments of a single side. Daily sessions consist of ten presentations per side. Measures are frequency of responding and detailed turning trajectories. Complete assessment of the functional return of behavior in this testing paradigm takes 3-6 months to complete.postprin
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Higgs boson decay into 2 photons in the type~II Seesaw Model
We study the two photon decay channel of the Standard Model-like component of
the CP-even Higgs bosons present in the type II Seesaw Model. The corresponding
cross-section is found to be significantly enhanced in parts of the parameter
space, due to the (doubly-)charged Higgs bosons' virtual
contributions, while all the other Higgs decay channels remain Standard
Model(SM)-like. In other parts of the parameter space (and
) interfere destructively, reducing the two photon branching ratio
tremendously below the SM prediction. Such properties allow to account for any
excess such as the one reported by ATLAS/CMS at GeV if confirmed
by future data; if not, for the fact that a SM-like Higgs exclusion in the
diphoton channel around 114-115 GeV as reported by ATLAS, does not contradict a
SM-like Higgs at LEP(!), and at any rate, for the fact that ATLAS/CMS exclusion
limits put stringent lower bounds on the mass, particularly in
the parameter space regions where the direct limits from same-sign leptonic
decays of do not apply.Comment: 26 pages, 7 figure
W Plus Multiple Jets at the LHC with High Energy Jets
We study the production of a W boson in association with n hard QCD jets (for
n>=2), with a particular emphasis on results relevant for the Large Hadron
Collider (7 TeV and 8 TeV). We present predictions for this process from High
Energy Jets, a framework for all-order resummation of the dominant
contributions from wide-angle QCD emissions. We first compare predictions
against recent ATLAS data and then shift focus to observables and regions of
phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure
Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles
Background:
Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;).
Methodology/Principal Findings:
We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods.
Conclusions/Significance:
Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms
The Spin Structure of the Nucleon
We present an overview of recent experimental and theoretical advances in our
understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
Unintentional asphyxia, SIDS, and medically explained deaths:A descriptive study of outcomes of child death review (CDR) investigations following sudden unexpected death in infancy
Background:
A comprehensive Child Death Review (CDR) program was introduced in England and Wales in 2008 but as yet data have only been analysed at a local level, limiting the learning from deaths. The aim of this study is to describe the profile of causes and risk factors for Sudden Unexpected Death in Infancy (SUDI) as determined by the new CDR program.
Methods:
This was a descriptive outcome study using data from Child Death Overview Panel (CDOP) Form C for SUDI cases dying during 2010-2 in the West Midlands region of England. The main outcome measures were: cause of death, risk factors and potential preventability of death, and determination of deaths probably due to unintentional asphyxia.
Results:
Data were obtained for 65/70 (93%) SUDI cases. 20/65 (31%) deaths were initially categorised as due to medical causes; 21/65 (32%) as SIDS, and 24/65 (37%) as undetermined. Reanalysis suggested that 2/21 SIDS and 7/24 undetermined deaths were probably due to unintentional asphyxia, with 6 of these involving co-sleeping and excessive parental alcohol consumption. Deaths classified as ‘undetermined’ had significantly higher total family and environmental risk factor scores (mean 2.6, 95% CI 2.0– 3.3) compared to those classified as SIDS (mean 1.6, 95% CI 1.2-1.9), or medical causes for death (mean 1.1, 95% CI 0.8-1.3). 9/20 (47%) of medical deaths, 19/21 (90%) SIDS and 23/24 (96%) undetermined deaths were considered to be potentially preventable. There were inadequacies in medical provision identified in 5/20 (25%) of medically explained deaths.
Conclusions:
The CDR program results in detailed information about risk factors for SUDI cases but failed to recognise deaths probably due to unintentional asphyxia. The misclassification of probable unintentional asphyxial deaths and SIDS as ‘undetermined deaths’ is likely to limit learning from these deaths and inhibit prevention strategies. Many SUDI occurred in families with mental illness, substance misuse and chaotic lifestyles and most in unsafe sleep-environments. This knowledge could be used to better target safe sleep advice for vulnerable families and prevent SUDI in the future
Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.open
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
- …
