336 research outputs found
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.
Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes
Ecology: a prerequisite for malaria elimination and eradication
* Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific
* The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria
* Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission
* Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog
Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia
The production of palm oil (PO) is highly profitable. The economies of the principal producers, Malaysia and Indonesia, and others, benefit considerably. Climate change (CC) will most likely have an impact on the distribution of oil palms (OP) (Elaeis guineensis). Here we present modelled CC projections with respect to the suitability of growing OP, in Malaysia and Indonesia. A process-oriented niche model of OP was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. Two Global Climate Models (GCMs), CSIRO-Mk3.0 and MIROC-H, were used to explore the impacts of CC under the A1B and A2 scenarios for 2030, 2070 and 2100. Decreases in climatic suitability for OP in the region were gradual by 2030 but became more pronounced by 2100. These projections imply that OP growth will be affected severely by CC, with obvious implications to the economies of (a) Indonesia and Malaysia and (b) the PO industry, but with potential benefits towards reducing CC. A possible remedial action is to concentrate research on development of new varieties of OP that are less vulnerable to CC.The Portuguese-based authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the Project "BioEnv - Biotechnology and Bioengineering for a sustainable world", REF. NORTE-07-0124-FEDER-000048, co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER
Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors
Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1).
The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 µM DXR P<0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P<0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer
A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.
Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often
The effect of intra-articular botulinum toxin A on substance P, prostaglandin E-2, and tumor necrosis factor alpha in the canine osteoarthritic joint
Background: Recently, intra-articular botulinum toxin A (IA BoNT A) has been shown to reduce joint pain in osteoarthritic dogs. Similar results have been reported in human patients with arthritis. However, the mechanism of the antinociceptive action of IA BoNT A is currently not known. The aim of this study was to explore this mechanism of action by investigating the effect of IA BoNT A on synovial fluid (SF) and serum substance P (SP), prostaglandin E-2 (PGE(2)), and tumor necrosis factor alpha (TNF-alpha) in osteoarthritic dogs. Additionally, the aim was to compare SF SP and PGE(2) between osteoarthritic and non-osteoarthritic joints, and investigate associations between SP, PGE(2), osteoarthritic pain, and the signalment of dogs. Thirty-five dogs with chronic naturally occurring osteoarthritis and 13 non-osteoarthritic control dogs were included in the study. Osteoarthritic dogs received either IA BoNT A (n = 19) or IA placebo (n = 16). Serum and SF samples were collected and osteoarthritic pain was evaluated before (baseline) and 2 and 8 weeks after treatment. Osteoarthritic pain was assessed with force platform, Helsinki Chronic Pain Index, and joint palpation. Synovial fluid samples were obtained from control dogs after euthanasia. The change from baseline in SP and PGE(2) concentration was compared between the IA BoNT A and placebo groups. The synovial fluid SP and PGE(2) concentration was compared between osteoarthritic and control joints. Associations between SP, PGE(2), osteoarthritic pain, and the signalment of dogs were evaluated. Results: There was no significant change from baseline in SP or PGE(2) after IA BoNT A. Synovial fluid PGE(2) was significantly higher in osteoarthritic compared to control joints. Synovial fluid PGE(2) correlated with osteoarthritic pain. No associations were found between SP or PGE2 and the signalment of dogs. The concentration of TNF-alpha remained under the detection limit of the assay in all samples. Conclusions: The results suggest that the antinociceptive effect of IA BoNT A in the joint might not be related to the inhibition of SP nor PGE(2). Synovial fluid PGE(2,) but not SP, could be a marker for chronic osteoarthritis and pain in dogs.Peer reviewe
Rethinking 'risk' and self-management for chronic illness
Self-management for chronic illness is a current high profile UK healthcare policy. Policy and clinical recommendations relating to chronic illnesses are framed within a language of lifestyle risk management. This article argues the enactment of risk within current UK self-management policy is intimately related to neo-liberal ideology and is geared towards population governance. The approach that dominates policy perspectives to ‘risk' management is critiqued for positioning people as rational subjects who calculate risk probabilities and act upon them. Furthermore this perspective fails to understand the lay person's construction and enactment of risk, their agenda and contextual needs when living with chronic illness. Of everyday relevance to lay people is the management of risk and uncertainty relating to social roles and obligations, the emotions involved when encountering the risk and uncertainty in chronic illness, and the challenges posed by social structural factors and social environments that have to be managed. Thus, clinical enactments of self-management policy would benefit from taking a more holistic view to patient need and seek to avoid solely communicating lifestyle risk factors to be self-managed
Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks
The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yak’s hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using
high-density SNP genotyping and whole-genome sequencing.
These yaks inherited ~1.3% of their genome from bovine
ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding
Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies.National Institutes of Health (U.S.) (U54HG004968
- …
