5,469 research outputs found
Unique walnut-shaped porous MnO<inf>2</inf>/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability
Unique walnut-shaped porous MnO2/carbon nanospheres via in situ carbonization of amorphous MnO2 nanospheres demonstrate enhanced reaction kinetics for lithium storage.This work is realized in the frame of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Life Membership at the Clare Hall, Cambridge and the financial support of the Department of Chemistry, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. T. Hasan acknowledges funding from the Royal Academy of Engineering (Graphlex) and an Impact Acceleration Award (GRASS). This work is also financially supported by the National Science Foundation for Young Scholars of China (No. 21301133 and 51302204), International Science & Technology Cooperation Program of China (2015DFE52870) and and Self-determined and Innovative Research Funds of the SKLWUT (2015‐ZD‐7). The authors also would like to thank Dr. Bin-Jie Wang from Shanghai Nanoport (FEI, Shanghai) for TEM analysis, and thank Hang Ping from Wuhan University of Technology for the TGA/DSC tests.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6TA00594
Three geographically separate domestications of Asian rice
Domesticated rice (Oryza sativa L.) accompanied the dawn of Asian civilization(1) and has become one of world's staple crops. From archaeological and genetic evidence various contradictory scenarios for the origin of different varieties of cultivated rice have been proposed, the most recent based on a single domestication(2,3). By examining the footprints of selection in the genomes of different cultivated rice types, we show that there were three independent domestications in different parts of Asia. We identify wild populations in southern China and the Yangtze valley as the source of the japonica gene pool, and populations in Indochina and the Brahmaputra valley as the source of the indica gene pool. We reveal a hitherto unrecognized origin for the aus variety in central India or Bangladesh. We also conclude that aromatic rice is a result of a hybridization between japonica and aus, and that the tropical and temperate versions of japonica are later adaptations of one crop. Our conclusions are in accord with archaeological evidence that suggests widespread origins of rice cultivation(1,4). We therefore anticipate that our results will stimulate a more productive collaboration between genetic and archaeological studies of rice domestication, and guide utilization of genetic resources in breeding programmes aimed at crop improvement.European Research Council [339941]info:eu-repo/semantics/publishedVersio
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Runtime analysis of non-elitist populations: from classical optimisation to partial information
Although widely applied in optimisation, relatively little has been proven rigorously about the role and behaviour of populations in randomised search processes. This paper presents a new method to prove upper bounds on the expected optimisation time of population-based randomised search heuristics that use non-elitist selection mechanisms and unary variation operators. Our results follow from a detailed drift analysis of the population dynamics in these heuristics. This analysis shows that the optimisation time depends on the relationship between the strength of the selective pressure and the degree of variation introduced by the variation operator. Given limited variation, a surprisingly weak selective pressure suffices to optimise many functions in expected polynomial time. We derive upper bounds on the expected optimisation time of non-elitist Evolutionary Algorithms (EA) using various selection mechanisms, including fitness proportionate selection. We show that EAs using fitness proportionate selection can optimise standard benchmark functions in expected polynomial time given a sufficiently low mutation rate.
As a second contribution, we consider an optimisation scenario with partial information, where fitness values of solutions are only partially available. We prove that non-elitist EAs under a set of specific conditions can optimise benchmark functions in expected polynomial time, even when vanishingly little information about the fitness values of individual solutions or populations is available. To our knowledge, this is the first runtime analysis of randomised search heuristics under partial information
Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage
We report on the synthesis and electrochemical characterization of nanohybrid polypyrrole (PPy) (PPy/Fe2O3) materials for electrochemical storage applications. We have shown that the incorporation of nanoparticles inside the PPy notably increases the charge storage capability in comparison to the “pure” conducting polymer. Incorporation of large anions, i.e., paratoluenesulfonate, allows a further improvement in the capacity. These charge storage modifications have been attributed to the morphology of the composite in which the particle sizes and the specific surface area are modified with the incorporation of nanoparticles. High capacity and stability have been obtained in PC/NEt4BF4 (at 20 mV/s), i.e., 47 mAh/g, with only a 3% charge loss after one thousand cyles. The kinetics of charge–discharge is also improved by the hybrid nanocomposite morphology modifications, which increase the rate of insertion–expulsion of counter anions in the bulk of the film. A room temperature ionic liquid such as imidazolium trifluoromethanesulfonimide seems to be a promising electrolyte because it further increases the capacity up to 53 mAh/g with a high stability during charge–discharge processes
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
HapTree: A Novel Bayesian Framework for Single Individual Polyplotyping Using NGS Data
As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy. Yet computational investigations into polyploid genomes carry great importance, impacting plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukaryotes and (epi)genetic interactions between copies of genes. In this paper, we describe a novel maximum-likelihood estimation framework, HapTree, for polyploid haplotype assembly of an individual genome using NGS read datasets. We evaluate the performance of HapTree on simulated polyploid sequencing read data modeled after Illumina sequencing technologies. For triploid and higher ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly accuracy and efficiency over the state-of-the-art; moreover, HapTree is the first scalable polyplotyping method for higher ploidy. As a proof of concept, we also test our method on real sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplotypes with respect to trio-based diplotype annotation as the ground truth. The results indicate that HapTree significantly improves the switch accuracy within phased haplotype blocks as compared to existing haplotype assembly methods, while producing comparable minimum error correction (MEC) values. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5.National Science Foundation (U.S.) (NSF/NIH BIGDATA Grant R01GM108348-01)National Science Foundation (U.S.) (Graduate Research Fellowship)Simons Foundatio
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
Facile, productive, and cost-effective synthesis of a novel tetrazine-based iron oxide nanoparticle for targeted image contrast agents and nanomedicines
We have developed an operationally simple, time, and cost-effective protocol to produce a novel tetrazine-based iron oxide nanoparticle using commercially available and inexpensive materials. Our protocol proceeds at room temperature and uses hexafluorophosphate azabenzotriazole tetramethyl uronium, a well-known, widely used reagent for the large-scale industrial production of important pharmaceuticals. The nanoparticles obtained have a diameter range between 16 and 21 nm and showed no toxicity against endothelial cell lines. The tetrazine moiety on the nanoparticle surface could potentially allow further attachment of specific targeting vectors by using so-called copper-free click chemistry. We therefore anticipate that our protocol can represent a significant breakthrough in the future development and commercialization of improved, tissue-specific contrast agents and drug delivery for clinical diagnosis, monitoring and therapy of diseases at an asymptomatic stage
- …
