42 research outputs found
Tense and aspect in word problems about motion: diagram, gesture, and the felt experience of time
© 2014, Mathematics Education Research Group of Australasia, Inc. Word problems about motion contain various conjugated verb forms. As students and teachers grapple with such word problems, they jointly operationalize diagrams, gestures, and language. Drawing on findings from a 3-year research project examining the social semiotics of classroom interaction, we show how teachers and students use gesture and diagram to make sense of complex verb forms in such word problems. We focus on the grammatical category of “aspect” for how it broadens the concept of verb tense. Aspect conveys duration and completion or frequency of an event. The aspect of a verb defines its temporal flow (or lack thereof) and the location of a vantage point for making sense of this durational process
GABA Receptors and the Pharmacology of Sleep
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia
The waking brain: an update
Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center
Ca2+ in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats
Exploration zones: A framework for describing the emergent structure of learning activities
Recommended from our members
An evolving framework for describing student engagement in classroom activities
Student engagement in classroom activities is usually described as a function of factors such as human needs, affect, intention, motivation, interests, identity, and others. We take a different approach and develop a framework that models classroom engagement as a function of students' . conceptual competence in the . specific content (e.g., the mathematics of motion) of an activity. The framework uses a spatial metaphor-i.e., the classroom . activity as a territory through which students move-as a way to both capture common engagement-related dynamics and as a communicative device. In this formulation, then, students' engaged participation can be understood in terms of the nature of the " regions" and overall " topography" of the activity territory, and how much student . movement such a territory affords. We offer the framework not in competition with other instructional design approaches, but rather as an additional tool to aid in the analysis and conduct of engaging classroom activities. © 2011 Elsevier Inc.
An evolving framework for describing student engagement in classroom activities
Student engagement in classroom activities is usually described as a function of factors such as human needs, affect, intention, motivation, interests, identity, and others. We take a different approach and develop a framework that models classroom engagement as a function of students' . conceptual competence in the . specific content (e.g., the mathematics of motion) of an activity. The framework uses a spatial metaphor-i.e., the classroom . activity as a territory through which students move-as a way to both capture common engagement-related dynamics and as a communicative device. In this formulation, then, students' engaged participation can be understood in terms of the nature of the " regions" and overall " topography" of the activity territory, and how much student . movement such a territory affords. We offer the framework not in competition with other instructional design approaches, but rather as an additional tool to aid in the analysis and conduct of engaging classroom activities. © 2011 Elsevier Inc.
Recommended from our members
