2,726 research outputs found

    Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine pH

    Get PDF
    We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50°C) at two injected acid strengths for a period of 4 hours. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary

    The imaging of dynamic multiphase fluid flow using synchrotron-based x-ray microtomography at reservoir conditions

    Get PDF
    Fast synchrotron-based X-ray microtomography was used to image the injection of super-critical CO2 under subsurface conditions into a brine-saturated carbonate sample at the pore-scale with a voxel size of 3.64μm and a temporal resolution of 45 s. Capillary pressure was measured from the images by finding the curvature of terminal menisci of both connected and disconnected CO2 clusters. We provide an analysis of three individual dynamic drainage events at elevated temperatures and pressures on the tens of seconds timescale, showing non-local interface recession due to capillary pressure change, and both local and distal (non-local) snap-off. The measured capillary pressure change is not sufficient to explain snap-off in this system, as the disconnected CO2 has a much lower capillary pressure than the connected CO2 both before and after the event. Disconnected regions instead preserve extremely low dynamic capillary pressures generated during the event. Snap-off due to these dynamic effects is not only controlled by the pore topography and throat radius, but also by the local fluid arrangement. Whereas disconnected fluid configurations produced by local snap-off were rapidly reconnected with the connected CO2 region, distal snap-off produced much more long-lasting fluid configurations, showing that dynamic forces can have a persistent impact on the pattern and sequence of drainage events.</p

    Molecular random tilings as glasses

    Full text link
    We have recently shown [Blunt et al., Science 322, 1077 (2008)] that p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long range correlations punctuated by sparse localised tiling defects. In this paper we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We show that the structural relaxation of these systems is via the propagation--reaction of tiling defects, giving rise to dynamic heterogeneity. We study the scaling properties of the dynamics, and discuss connections with kinetically constrained models of glasses.Comment: 5 pages, 5 figure

    Role of liver biopsy in nonalcoholic fatty liver disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD), defined as abnormal accumulation (> 5%) of hepatic triglyceride without excess alcohol intake, is the most common form of chronic liver disease in adults and children in the United States. NAFLD encompasses a spectrum of histologic findings including uncomplicated steatosis, steatosis with inflammation and steatohepatitis [nonalcoholic steatohepatitis (NASH)]; the latter can advance to cirrhosis and hepatocellular carcinoma. NASH is currently accepted as the hepatic manifestation of the set of cardiovascular risk factors collectively known as metabolic syndrome. In 1999 a system for histologic grading and staging for NASH was proposed; this was revised by the NASH Clinical Research Network in 2005 for the entire spectrum of lesions in NAFLD, including the lesions and patterns of pediatric NAFLD, and for application in clinical research trials. Diagnosis remains distinct from grade and stage. A recent European proposal separates steatosis from activity to derive a numeric diagnosis of NASH. Even though there have been promising advancements in non-invasive testing, these tests are not yet detailed enough to replace the full range of findings provided by liver biopsy evaluation. Limitations of biopsy are acknowledged, but liver biopsy remains the “gold standard” for diagnosis and determination of amounts of necroinflammatory activity, and location of fibrosis, as well as remodeling of the parenchyma in NASH. This review focuses on the specific histologic lesions of NAFLD and NASH, grading and staging, differential diagnoses to be considered, and the continuing role of the liver biopsy in this important liver disease

    Macroscopic Equations of Motion for Two Phase Flow in Porous Media

    Full text link
    The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium which shows the qualitative saturation dependence known from experiment. In addition the new equations allow to describe the spatiotemporal changes of residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin

    Interaction Picture Density Matrix Quantum Monte Carlo

    Get PDF
    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N -body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.Comment: Minor text modifications and added deviation subplot to Fig. 9 following referee's review comments. Include link to supplementary material in reference

    Coerced Mechanical Coarsening of Nanoparticle Assemblies

    Get PDF
    Coarsening is a ubiquitous phenomenon [1-3] that underpins countless processes in nature, including epitaxial growth [1,3,4], the phase separation of alloys, polymers and binary fluids [2], the growth of bubbles in foams5, and pattern formation in biomembranes6. Here we show, in the first real-time experimental study of the evolution of an adsorbed colloidal nanoparticle array, that tapping-mode atomic force microscopy (TM-AFM) can drive the coarsening of Au nanoparticle assemblies on silicon surfaces. Although the growth exponent has a strong dependence on the initial sample morphology, our observations are largely consistent with modified Ostwald ripening processes [7-9]. To date, ripening processes have been exclusively considered to be thermally activated, but we show that nanoparticle assemblies can be mechanically coerced towards equilibrium, representing a new approach to directed coarsening. This strategy enables precise control over the evolution of micro- and nanostructures

    Accurate exchange-correlation energies for the warm dense electron gas

    Get PDF
    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average NN-body density matrices for uniform electron gas systems of up to 10124^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the kk-space configuration path-integral formalism disagree by up to \sim1010\% at certain reduced temperatures T/TF0.5T/T_F \le 0.5 and densities rs1r_s \le 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for T/TF1T/T_F \ge 1 and rs2r_s \le 2.Comment: Accepted version: added free energy data and restructured text. Now includes supplementary materia

    Continuum-scale characterization of solute transport based on pore-scale velocity distributions

    Get PDF
    We present a methodology to characterize a continuum-scale model of transport in porous media on the basis of pore-scale distributions of velocities computed in three-dimensional pore-space images. The methodology is tested against pore-scale simulations of flow and transport for a bead pack and a sandstone sample. We employ a double continuum approach to describe transport in mobile and immobile regions. Model parameters are characterized through inputs resulting from the micron-scale reconstruction of the pore space geometry and the related velocity field. We employ the outputs of pore-scale analysis to (i) quantify the proportion of mobile and immobile fluid regions, and (ii) assign the velocity distribution in an effective representation of the medium internal structure. Our results (1) show that this simple conceptual model reproduces the spatial profiles of solute concentration rendered by pore-scale simulation without resorting to model calibration, and (2) highlight the critical role of pore-scale velocities in the characterization of the model parameters
    corecore