64 research outputs found
Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?
Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided
Spectropolarimetry of stars across the H-R diagram
The growing sample of magnetic stars shows a remarkable diversity in the
properties of their magnetic fields. The overall goal of current studies is to
understand the origin, evolution, and structure of stellar magnetic fields in
stars of different mass at different evolutionary stages. In this chapter we
discuss recent measurements together with the underlying assumptions in the
interpretation of data and the requirements, both observational and
theoretical, for obtaining a realistic overview of the role of magnetic fields
in various types of stars.Comment: 23 pages, 3 figures, chapter 7 of "Astronomical Polarisation from the
Infrared to Gamma Rays", published in Astrophysics and Space Science Library
46
US examination of the appendix in children with suspected appendicitis: the additional value of secondary signs
The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity
Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the α-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell’s change in bioenergetic requirements. By contributing to the control of α-ketoglutarate levels, dynamics, and oxidation state, the α-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer
Recommended from our members
Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion
853-86
Monodelphis domestica: An Animal Model for Studies in Photodermatology Including the Induction of Melanoma
Construction and application of an Escherichia coli bioreporter for aniline and chloroaniline detection
- …
