81 research outputs found
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Hsp70 Genotypes and Heat Tolerance of Commercial and Native Chickens Reared in Hot and Humid Conditions
Modulation of purinergic signaling by NPP-type ectophosphodiesterases
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility
Climate simulations for 1880-2003 with GISS modelE
We carry out climate simulations for 1880-2003 with GISS modelE driven by ten
measured or estimated climate forcings. An ensemble of climate model runs is
carried out for each forcing acting individually and for all forcing mechanisms
acting together. We compare side-by-side simulated climate change for each
forcing, all forcings, observations, unforced variability among model ensemble
members, and, if available, observed variability. Discrepancies between
observations and simulations with all forcings are due to model deficiencies,
inaccurate or incomplete forcings, and imperfect observations. Although there
are notable discrepancies between model and observations, the fidelity is
sufficient to encourage use of the model for simulations of future climate
change. By using a fixed well-documented model and accurately defining the
1880-2003 forcings, we aim to provide a benchmark against which the effect of
improvements in the model, climate forcings, and observations can be tested.
Principal model deficiencies include unrealistically weak tropical El Nino-like
variability and a poor distribution of sea ice, with too much sea ice in the
Northern Hemisphere and too little in the Southern Hemisphere. The greatest
uncertainties in the forcings are the temporal and spatial variations of
anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic
Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl–like molecules binding
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)
TOTAL ENERGY CALCULATIONS FOR STRUCTURAL PHASE-TRANSFORMATIONS
The structural integrity and physical properties of crys talline solids are frequently limited or enhanced by the occurrence of phase transformations. Martensitic trans formations involve the collective displacement of atoms from one ordered state to another. Modern methods to determine the microscopic electronic changes as the atoms move are now accurate enough to evaluate the very small energy differences involved. Extensive first principles calculations for the prototypical Martensitic transformation from body-centered cubic (bcc) to close- packed 9R structure in sodium metal are described. The minimum energy coordinate or configuration path be tween the bcc and 9R structures is determined as well as paths to other competing close-packed structures. The energy barriers and important anharmonic interactions are identified and general conclusions drawn. The calcu lational methods used to solve the Schrödinger equation include pseudopotentials, fast Fourier transforms, efficient matrix diagonalization, and supercells with many atoms
Determination of Folic Acid in Serum by SPE and High Performance Liquid Chromatography with Photochemical Spectrofluorimetry
- …
