316 research outputs found
Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157
Interstellar molecules with a peptide link -NH-C(=O)-, like formamide
(NHCHO), acetamide (NHCOCH) and isocyanic acid (HNCO) are
particularly interesting for their potential role in pre-biotic chemistry. We
have studied their emission in the protostellar shock regions L1157-B1 and
L1157-B2, with the IRAM 30m telescope, as part of the ASAI Large Program.
Analysis of the line profiles shows that the emission arises from the outflow
cavities associated with B1 and B2. Molecular abundance of
and are derived for
formamide and isocyanic acid, respectively, from a simple rotational diagram
analysis. Conversely, NHCOCH was not detected down to a relative
abundance of a few . B1 and B2 appear to be among the richest
Galactic sources of HNCO and NHCHO molecules. A tight linear correlation
between their abundances is observed, suggesting that the two species are
chemically related. Comparison with astrochemical models favours molecule
formation on ice grain mantles, with NHCHO generated from hydrogenation of
HNCO.Comment: 11 pages, 9 figures. Accepted for publication in MNRAS Main Journal.
Accepted 2014 August 19, in original form 2014 July
Ising Spin Glass in a Transverse Magnetic Field
We study the three-dimensional quantum Ising spin glass in a transverse
magnetic field following the evolution of the bond probability distribution
under Renormalisation Group transformations. The phase diagram (critical
temperature {\em vs} transverse field ) we obtain shows a finite
slope near , in contrast with the infinite slope for the pure case. Our
results compare very well with the experimental data recently obtained for the
dipolar Ising spin glass LiHoYF, in a transverse field.
This indicates that this system is more apropriately described by a model with
short range interactions than by an equivalent Sherrington-Kirkpatrick model in
a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9
Spin-3/2 random quantum antiferromagnetic chains
We use a modified perturbative renormalization group approach to study the
random quantum antiferromagnetic spin-3/2 chain. We find that in the case of
rectangular distributions there is a quantum Griffiths phase and we obtain the
dynamical critical exponent as a function of disorder. Only in the case of
extreme disorder, characterized by a power law distribution of exchange
couplings, we find evidence that a random singlet phase could be reached. We
discuss the differences between our results and those obtained by other
approaches.Comment: 4 page
Phase diagram of the random Heisenberg antiferromagnetic spin-1 chain
We present a new perturbative real space renormalization group (RG) to study
random quantum spin chains and other one-dimensional disordered quantum
systems. The method overcomes problems of the original approach which fails for
quantum random chains with spins larger than S=1/2. Since it works even for
weak disorder we are able to obtain the zero temperature phase diagram of the
random antiferromagnetic Heisenberg spin-1 chain as a function of disorder. We
find a random singlet phase for strong disorder and as disorder decreases, the
system shows a crossover from a Griffiths to a disordered Haldane phase.Comment: 4 pages, 10 figure
Role of Disorder on the Quantum Critical Point of a Model for Heavy Fermions
A zero temperature real space renormalization group (RG) approach is used to
investigate the role of disorder near the quantum critical point (QCP) of a
Kondo necklace (XY-KN) model. In the pure case this approach yields
implying that any coupling between the local moments and the
conduction electrons leads to a non-magnetic phase. We also consider an
anisotropic version of the model (), for which there is a quantum phase
transition at a finite value of the ratio between the coupling and the
bandwidth, . Disorder is introduced either in the on-site interactions
or in the hopping terms. We find that in both cases randomness is irrelevant in
the model, i.e., the disorder induced magnetic-non-magnetic quantum
phase transition is controlled by the same exponents of the pure case. Finally,
we show the fixed point distributions at the atractors of the
disordered, non-magnetic phases.Comment: 5 pages, 3 figure
Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets
It is conjectured that the Haldane phase of the S=1 antiferromagnetic
Heisenberg chain and the ferromagnetic-antiferromagnetic alternating
Heisenberg chain is stable against any strength of randomness, because of
imposed breakdown of translational symmetry. This conjecture is confirmed by
the density matrix renormalization group calculation of the string order
parameter and the energy gap distribution.Comment: 4 Pages, 7 figures; Considerable revisions are made in abstract and
main text. Final accepted versio
Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3
The influence of non-magnetic impurities on the spectrum and dynamical spin
structure factor of a model for CuGeO is studied. A simple extension to
Zn-doped is also discussed. Using Exact Diagonalization
techniques and intuitive arguments we show that Zn-doping introduces states in
the Spin-Peierls gap of CuGeO. This effect can beunderstood easily in the
large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins,
which interact with each other through very weak effective antiferromagnetic
couplings. When the dimerization is small, a similar effect is observed but now
with the free S=1/2 spins being the resulting S=1/2 ground state of severed
chains with an odd number of sites. Experimental consequences of these results
are discussed. It is interesting to observe that the spin correlations along
the chains are enhanced by Zn-doping according to the numerical data presented
here. As recent numerical calculations have shown, similar arguments apply to
ladders with non-magnetic impurities simply replacing the tendency to
dimerization in CuGeO by the tendency to form spin-singlets along the rungs
in SrCuO.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a
section with experimental predictions, submmited to Phys. Rev. B in May 199
Percolation Transition in the random antiferromagnetic spin-1 chain
We give a physical description in terms of percolation theory of the phase
transition that occurs when the disorder increases in the random
antiferromagnetic spin-1 chain between a gapless phase with topological order
and a random singlet phase. We study the statistical properties of the
percolation clusters by numerical simulations, and we compute exact exponents
characterizing the transition by a real-space renormalization group
calculation.Comment: 9 pages, 4 encapsulated Postscript figures, REVTeX 3.
- …
