5,361 research outputs found
First global analysis of SEASAT scatterometer winds and potential for meteorological research
The first global wind fields from SEASAT-A scatterometer (SASS) data were produced. Fifteen days of record are available on tape, with unique wind directions indicated for each observation. The methodology of the production of this data set is described, as well as the testing of its validity. A number of displays of the data, on large and small scales, analyzed and gridded, are provided
Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL
Historical Type Ia supernovae are a leading candidate for the source of
positrons observed through their diffuse annihilation emission in the Galaxy.
However, search for annihilation emission from individual Type Ia supernovae
has not been possible before the improved sensitivity of \integral. The total
511 keV annihilation flux from individual SNe Ia, as well as their contribution
to the overall diffuse emission, depends critically on the escape fraction of
positrons produced in Co decays. Late optical light curves suggest that
this fraction may be as high as 5%. We searched for positron annihilation
radiation from the historical Type Ia supernova SN 1006 using the SPI
instrument on \integral. We did not detect significant 511 keV line emission,
with a 3 flux upper limit of 0.59 x 10 ergs cm^-2 s^-1 for \wsim
1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds
to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and
rules out the possibility that Type Ia supernovae produce all of the positrons
in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less
than 10 years. Future observations with \integral will provide stronger
limits on the escape fraction of positrons, the mean positron lifetime, and the
contribution of Type Ia supernovae to the overall positron content of the
Galaxy.Comment: 3 pages, 2 figures, accepted for publication in ApJ
A Note on Frame Dragging
The measurement of spin effects in general relativity has recently taken
centre stage with the successfully launched Gravity Probe B experiment coming
toward an end, coupled with recently reported measurements using laser ranging.
Many accounts of these experiments have been in terms of frame-dragging. We
point out that this terminology has given rise to much confusion and that a
better description is in terms of spin-orbit and spin-spin effects. In
particular, we point out that the de Sitter precession (which has been mesured
to a high accuracy) is also a frame-dragging effect and provides an accurate
benchmark measurement of spin-orbit effects which GPB needs to emulate
How does colonoscopy compare with fecal occult blood testing as a screening tool for colon cancer?
No studies have directly compared colonoscopy with fecal occult blood testing (FOBT). Multiple screening trials have demonstrated that a primary strategy of 3-card home FOBT with follow-up colonoscopy for positive results is associated with a significant reduction in mortality from colorectalcancer (strength of recommendation [SOR]: A, based on systematic reviews of randomized and nonrandomized controlled trials). A single negative office-based digital FOBT does not decrease the likelihood of advanced neoplasia (SOR: B, based on a single prospective cohort study). There are no publications of screening trials with colonoscopy, but the odds of dying from colorectal cancer are lower for patients undergoing colonoscopy compared with patients not having a colonoscopy (SOR: B, based on extrapolation from a case-control study). Both strategies are cost-effective (SOR: A, based on a systematic review of high-quality cost-effective analyses)
Anatomy of the binary black hole recoil: A multipolar analysis
We present a multipolar analysis of the gravitational recoil computed in
recent numerical simulations of binary black hole (BH) coalescence, for both
unequal masses and non-zero, non-precessing spins. We show that multipole
moments up to and including l=4 are sufficient to accurately reproduce the
final recoil velocity (within ~2%) and that only a few dominant modes
contribute significantly to it (within ~5%). We describe how the relative
amplitudes, and more importantly, the relative phases, of these few modes
control the way in which the recoil builds up throughout the inspiral, merger,
and ringdown phases. We also find that the numerical results can be reproduced
by an ``effective Newtonian'' formula for the multipole moments obtained by
replacing the radial separation in the Newtonian formulae with an effective
radius computed from the numerical data. Beyond the merger, the numerical
results are reproduced by a superposition of three Kerr quasi-normal modes
(QNMs). Analytic formulae, obtained by expressing the multipole moments in
terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and
amount of ``anti-kick'' for each of the simulations. Lastly, we apply this
multipolar analysis to help explain the remarkable difference between the
amplitudes of planar and non-planar kicks for equal-mass spinning black holes.Comment: 28 pages, 20 figures, submitted to PRD; v2: minor revisions from
referee repor
Analysing the sustainability of the physical rehabilitation sector in seven fragile countries through multi-stakeholder involvement using a participatory consensus tool
Background: Sustainability is identified by nearly all organisations working in global health as one of the key indicators for project evaluation. Though typically recognised as an essential component for good project management to ensure positive impact, it is rarely applied effectively in practical terms and there are very few practical methods or tools to support implementation and monitoring of sustainable interventions. Further, despite efforts of stakeholders at all levels, the rehabilitation sector is not usually at the top of policy-makers’ agendas, which often results in limited to no funding and makes the task of building sustainability even more challenging at field level
A new parameterization of an empirical model for wind/ocean scatterometry
The power law form of the SEASAT A Scatterometer System (SASS) empirical backscatter-to-wind model function does not uniformly meet the instrument performance over the range 4 to 24 /ms. Analysis indicates that the horizontal polarization (H-Pol) and vertical polarization (V-Pol) components of the benchmark SASS1 model function yield self-consistent results only for a small mid-range of speeds at larger incidence angles, and for a somewhat larger range of speeds at smaller incidence angles. Comparison of SASS1 to in situ data over the Gulf of Alaska region further underscores the shortcomings of the power law form. Finally, a physically based empirical SASS model is proposed which corrects some of the deficiencies of power law models like SASS1. The new model allows the mutual determination of sea surface wind stress and wind speed in a consistent manner from SASS backscatter measurements
Modeling kicks from the merger of generic black-hole binaries
Recent numerical relativistic results demonstrate that the merger of
comparable-mass spinning black holes has a maximum ``recoil kick'' of up to
\sim 4000 \kms. However the scaling of these recoil velocities with mass
ratio is poorly understood. We present new runs showing that the maximum
possible kick perpendicular to the orbital plane does not scale as
(where is the symmetric mass ratio), as previously proposed, but is more
consistent with , at least for systems with low orbital precession.
We discuss the effect of this dependence on galactic ejection scenarios and
retention of intermediate-mass black holes in globular clusters.Comment: 5 pages, 1 figure, 3 tables. Version published in Astrophys. J. Let
Spectral Analysis of GRBs Measured by RHESSI
The Ge spectrometer of the RHESSI satellite is sensitive to Gamma Ray Bursts
(GRBs) from about 40 keV up to 17 MeV, thus ideally complementing the Swift/BAT
instrument whose sensitivity decreases above 150 keV. We present preliminary
results of spectral fits of RHESSI GRB data. After describing our method, the
RHESSI results are discussed and compared with Swift and Konus.Comment: 4 pages, 4 figures, conference proceedings, 'Swift and GRBs:
Unveiling the Relativistic Universe', San Servolo, Venice, 5-9 June 2006, to
appear in Il Nouvo Ciment
Lunar Fluid Core and Solid-Body Tides
Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core
- …
