5,131 research outputs found
Is There a Relationship between the Density of Primordial Black Holes in a Galaxy and the Rate of Cosmological Gamma-Ray Bursts?
The rate of accretion of matter from a solar-type star onto a primordial
black hole (PBH) that passes through it is calculated. The probability that a
PBH is captured into an orbit around a star in a galaxy is found. The mean
lifetime of the PBH in such an orbit and the rate of orbital captures of PBHs
in the galaxy are calculated. It is shown that this rate does not depend on the
mass of the PBH. This mechanism cannot make an appreciable contribution to the
rate of observed gamma-ray bursts. The density of PBHs in the galaxy can reach
a critical value - the density of the mass of dark matter in the galaxy.Comment: 7 page
Region of the anomalous compression under Bondi-Hoyle accretion
We investigate the properties of an axisymmetric non-magnetized gas flow
without angular momentum on a small compact object, in particular, on a
Schwarzschild black hole in the supersonic region near the object; the velocity
of the object itself is assumed to be low compared to the speed of sound at
infinity. First of all, we see that the streamlines intersect (i.e., a caustic
forms) on the symmetry axis at a certain distance from the center on the
front side if the pressure gradient is neglected. The characteristic radial
size of the region, in which the streamlines emerging from the sonic surface at
an angle no larger than to the axis intersect, is To refine the flow structure in this region, we numerically
compute the system in the adiabatic approximation without ignoring the
pressure. We estimate the parameters of the inferred region with anomalously
high matter temperature and density accompanied by anomalously high energy
release.Comment: 10 pages, 2 figure
A note on the peeling theorem in higher dimensions
We demonstrate the ``peeling property'' of the Weyl tensor in higher
dimensions in the case of even dimensions (and with some additional
assumptions), thereby providing a first step towards understanding of the
general peeling behaviour of the Weyl tensor, and the asymptotic structure at
null infinity, in higher dimensions.Comment: 5 pages, to appear in Class. Quantum Gra
Inverse Compton X-rays from the radio galaxy 3C 219
We report the results from a Chandra observation of the powerful nearby
(z=0.1744) radio galaxy 3C 219. We find evidence for non-thermal X-ray emission
from the radio lobes which fits fairly well with a combination of inverse
Compton scattering of Cosmic Microwave Background radiation and of nuclear
photons with the relativistic electrons in the lobes. The comparison between
radio synchrotron and IC emission yields a magnetic field strength
significantly lower (about a factor 3) than that calculated under minimum
energy conditions; the source energetics is then dominated by the relativistic
particles.Comment: 5 pages, 2 color figures, Accepted for publication in MNRAS pink
page
Gravitational radiation from dynamical black holes
An effective energy tensor for gravitational radiation is identified for
uniformly expanding flows of the Hawking mass-energy. It appears in an energy
conservation law expressing the change in mass due to the energy densities of
matter and gravitational radiation, with respect to a Killing-like vector
encoding a preferred flow of time outside a black hole. In a spin-coefficient
formulation, the components of the effective energy tensor can be understood as
the energy densities of ingoing and outgoing, transverse and longitudinal
gravitational radiation. By anchoring the flow to the trapping horizon of a
black hole in a given sequence of spatial hypersurfaces, there is a locally
unique flow and a measure of gravitational radiation in the strong-field
regime.Comment: 5 revtex4 pages. Additional comment
Extended radio emission in BL Lac objects - I: the images
We have observed 28 sources selected from the 1Jy sample of BL Lac objects
(Stickel et al. 1991) with the Very Large Array (VLA) in A, B and D
configurations at 1.36, 1.66 and 4.85 GHz, and/or with the Westerbork Synthesis
Radio Telescope (WSRT) at 1.40 GHz. In this paper we present high sensitivity
images at arcsecond resolution of the 18 objects showing extended structure in
our images, and of another source from the FIRST (Faint Images of the Radio Sky
at Twenty-cm) survey (Becker et al. 1995). In general our high sensitivity
images reveal an amount of extended emission larger than previously reported.
In some objects the luminosity of the extended structure is comparable with
that of FR~II radio sources. A future paper will be devoted to the
interpretation of these results.Comment: 12 pages, 35 figures, to appear on A&A Supp. Ser., postscript file
with figures included available at
http://www.ira.noto.cnr.it/staff/carlo/ds1030.ps.g
Breakdown of the linear approximation in the perturbative analysis of heat conduction in relativistic systems
We analyze the effects of thermal conduction in a relativistic fluid just
after its departure from spherical symmetry, on a time scale of the order of
relaxation time. Using first order perturbation theory, it is shown that, as in
spherical systems, at a critical point the effective inertial mass density of a
fluid element vanishes and becomes negative beyond that point. The impact of
this effect on the reliability of causality conditions is discussed.Comment: 11 pages (Latex2.09) To appear in Physics Letters
Axisymmetric electrovacuum spacetimes with a translational Killing vector at null infinity
By using the Bondi-Sachs-van der Burg formalism we analyze the asymptotic
properties at null infinity of axisymmetric electrovacuum spacetimes with a
translational Killing vector and, in general, an infinite ``cosmic string''
(represented by a conical singularity) along the axis. Such spacetimes admit
only a local null infinity. There is a non-vanishing news function due to the
existence of the string even though there is no radiation.
We prove that if null infinity has a smooth compact cross section and the
spacetime is not flat in a neighbourhood of null infinity, then the
translational Killing vector must be timelike and the spacetime is stationary.
The other case in which an additional symmetry of axisymmetric spacetimes
admits compact cross sections of null infinity is the boost symmetry, which
leads to radiative spacetimes representing ``uniformly accelerated objects''.
These cases were analyzed in detail in our previous works. If the translational
Killing vector is spacelike or null, corresponding to cylindrical or plane
waves, some complete generators of null infinity are ``singular'' but null
infinity itself can be smooth apart from these generators.
As two explicit examples of local null infinity, Schwarzschild spacetime with
a string and a class of cylindrical waves with a string are discussed in detail
in the Appendix.Comment: 15 pages, RevTeX, submitted to Class. Quantum Gra
On the stability of self-gravitating accreting flows
Analytic methods show stability of the stationary accretion of test fluids
but they are inconclusive in the case of self-gravitating stationary flows. We
investigate numerically stability of those stationary flows onto compact
objects that are transonic and rich in gas. In all studied examples solutions
appear stable. Numerical investigation suggests also that the analogy between
sonic and event horizons holds for small perturbations of compact support but
fails in the case of finite perturbations.Comment: 10 pages, accepted for publication in PR
CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe
The current authors have previously shown that inhomogeneous, but spherically
symmetric universe models containing only matter can yield a very good fit to
the SNIa data and the position of the first CMB peak. In this work we examine
how far away from the center of inhomogeneity the observer can be located in
these models and still fit the data well. Furthermore, we investigate whether
such an off-center location can explain the observed alignment of the lowest
multipoles of the CMB map. We find that the observer has to be located within a
radius of 15 Mpc from the center for the induced dipole to be less than that
observed by the COBE satellite. But for such small displacements from the
center, the induced quadru- and octopoles turn out to be insufficiently large
to explain the alignment.Comment: 8 pages (REVTeX4), 7 figures; v2: minor changes, matches published
versio
- …
