7,491 research outputs found

    In-plane effects on segmented-mirror control

    Get PDF
    Extremely large optical telescopes are being designed with primary mirrors composed of hundreds of segments. The “out-of-plane” piston, tip, and tilt degrees of freedom of each segment are actively controlled using feedback from relative height measurements between neighboring segments. The “in-plane” segment translations and clocking (rotation) are not actively controlled; however, in-plane motions affect the active control problem in several important ways, and thus need to be considered. We extend earlier analyses by constructing the “full” interaction matrix that relates the height, gap, and shear motion at sensor locations to all six degrees of freedom of segment motion, and use this to consider three effects. First, in-plane segment clocking results in height discontinuities between neighboring segments that can lead to a global control system response. Second, knowledge of the in-plane motion is required both to compensate for this effect and to compensate for sensor installation errors, and thus, we next consider the estimation of in-plane motion and the associated noise propagation characteristics. In-plane motion can be accurately estimated using measurements of the gap between segments, but with one unobservable mode in which every segment clocks by an equal amount. Finally, we examine whether in-plane measurements (gap and/or shear) can be used to estimate out-of-plane segment motion; these measurements can improve the noise multiplier for the “focus-mode” of the segmented-mirror array, which involves pure dihedral angle changes between segments and is not observable with only height measurements

    Stability Analysis of Cell Dynamics in Leukemia

    Get PDF
    Cataloged from PDF version of article.In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations

    Stability analysis of cell dynamics in leukemia

    Get PDF
    In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations. © 2012 EDP Sciences

    A Search for Exozodiacal Dust and Faint Companions Near Sirius, Procyon, and Altair with the NICMOS Coronagraph

    Get PDF
    We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. We did not achieve enough dynamic range to surpass the upper limits set by IRAS on the amount of exo-zodiacal dust in these systems, but we did set strong upper limits on the presence of nearby late-type and sub-stellar companions.Comment: 10 pages, 4 figure

    Tuberculosis treatment in a refugee and migrant population: 20 years of experience on the Thai-Burmese border.

    Get PDF
    Although tuberculosis (TB) is a curable disease, it remains a major global health problem and an important cause of morbidity and mortality among vulnerable populations, including refugees and migrants

    Yang-Lee Zeros of the Two- and Three-State Potts Model Defined on ϕ3\phi^3 Feynman Diagrams

    Full text link
    We present both analytic and numerical results on the position of the partition function zeros on the complex magnetic field plane of the q=2q=2 (Ising) and q=3q=3 states Potts model defined on ϕ3\phi^3 Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3q=3 states Potts model our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.Comment: 16 pages, 2 figures. Third version: the title was slightly changed. To be published in Physical Review

    From angle-action to Cartesian coordinates: A key transformation for molecular dynamics

    Full text link
    The transformation from angle-action variables to Cartesian coordinates is a crucial step of the (semi) classical description of bimolecular collisions and photo-fragmentations. The basic reason is that dynamical conditions corresponding to experiments are ideally generated in angle-action variables whereas the classical equations of motion are ideally solved in Cartesian coordinates by standard numerical approaches. To our knowledge, the previous transformation is available in the literature only for triatomic systems. The goal of the present work is to derive it for polyatomic ones.Comment: 10 pages, 11 figures, submitted to J. Chem. Phy

    Quasi-periodic oscillations in accreting magnetic white dwarfs: I. Observational constraints in X-ray and optical

    Get PDF
    International audienceQuasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5–10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5–10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5–10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model

    Short report: molecular markers associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in the Democratic Republic of Congo.

    Get PDF
    Sulfadoxine-pyrimethamine (SP) is the first line antimalarial treatment in the Democratic Republic of Congo. Using polymerase chain reaction, we assessed the prevalence of mutations in the dihydrofolate reductase (dhfr) (codons 108, 51, 59) and dihydropteroate synthase (dhps) (codons 437, 540) genes of Plasmodium falciparum, which have been associated with resistance to pyrimethamine and sulfadoxine, respectively. Four hundred seventy-four patients were sampled in Kilwa (N = 138), Kisangani (N = 112), Boende (N = 106), and Basankusu (N = 118). The proportion of triple mutations dhfr varied between sites but was always > 50%. The proportion of dhps double mutations was < 20%, with some sites as low as 0.9%. A quintuple mutation was present in 12.8% (16/125) samples in Kilwa; 11.9% (13/109) in Kisangani, 2.9% (3/102) in Boende, and 0.9% (1/112) in Basankusu. These results suggest high resistance to pyrimethamine alone or combined with sulfadoxine. Adding artesunate to SP does not seem a valid alternative to the current monotherapy
    corecore