1,549 research outputs found
Optimized laser pulse profile for efficient radiation pressure acceleration of ions
The radiation pressure acceleration regime of laser ion acceleration requires
high intensity laser pulses to function efficiently. Moreover the foil should
be opaque for incident radiation during the interaction to ensure maximum
momentum transfer from the pulse to the foil, which requires proper matching of
the target to the laser pulse. However, in the ultrarelativistic regime, this
leads to large acceleration distances, over which the high laser intensity for
a Gaussian laser pulse must be maintained. It is shown that proper tailoring of
the laser pulse profile can significantly reduce the acceleration distance,
leading to a compact laser ion accelerator, requiring less energy to operate.Comment: 10 pages, 4 figure
Election turnout statistics in many countries: similarities, differences, and a diffusive field model for decision-making
We study in details the turnout rate statistics for 77 elections in 11
different countries. We show that the empirical results established in a
previous paper for French elections appear to hold much more generally. We find
in particular that the spatial correlation of turnout rates decay
logarithmically with distance in all cases. This result is quantitatively
reproduced by a decision model that assumes that each voter makes his mind as a
result of three influence terms: one totally idiosyncratic component, one
city-specific term with short-ranged fluctuations in space, and one long-ranged
correlated field which propagates diffusively in space. A detailed analysis
reveals several interesting features: for example, different countries have
different degrees of local heterogeneities and seem to be characterized by a
different propensity for individuals to conform to the cultural norm. We
furthermore find clear signs of herding (i.e. strongly correlated decisions at
the individual level) in some countries, but not in others.Comment: 15 pages, 9 figures, 7 table
Chaotic, staggered and polarized dynamics in opinion forming: the contrarian effect
We revisit the no tie breaking 2-state Galam contrarian model of opinion
dynamics for update groups of size 3. While the initial model assumes a
constant density of contrarians a for both opinions, it now depends for each
opinion on its global support. Proportionate contrarians are thus found to
indeed preserve the former case main results. However, restricting the
contrarian behavior to only the current collective majority, makes the dynamics
more complex with novel features. For a density a<a_c=1/9 of one-sided
contrarians, a chaotic basin is found in the fifty-fifty region separated from
two majority-minority point attractors, one on each side. For 1/9<a< 0.301 only
the chaotic basin survives. In the range a>0.301 the chaotic basin disappears
and the majority starts to alternate between the two opinions with a staggered
flow towards two point attractors. We then study the effect of both, decoupling
the local update time sequence from the contrarian behavior activation, and a
smoothing of the majority rule. A status quo driven bias for contrarian
activation is also considered. Introduction of unsettled agents driven in the
debate on a contrarian basis is shown to only shrink the chaotic basin. The
model may shed light to recent apparent contradictory elections with on the one
hand very tied results like in US in 2000 and in Germany in 2002 and 2005, and
on the other hand, a huge majority like in France in 2002.Comment: 17 pages, 10 figure
Multiscaled Cross-Correlation Dynamics in Financial Time-Series
The cross correlation matrix between equities comprises multiple interactions
between traders with varying strategies and time horizons. In this paper, we
use the Maximum Overlap Discrete Wavelet Transform to calculate correlation
matrices over different timescales and then explore the eigenvalue spectrum
over sliding time windows. The dynamics of the eigenvalue spectrum at different
times and scales provides insight into the interactions between the numerous
constituents involved.
Eigenvalue dynamics are examined for both medium and high-frequency equity
returns, with the associated correlation structure shown to be dependent on
both time and scale. Additionally, the Epps effect is established using this
multivariate method and analyzed at longer scales than previously studied. A
partition of the eigenvalue time-series demonstrates, at very short scales, the
emergence of negative returns when the largest eigenvalue is greatest. Finally,
a portfolio optimization shows the importance of timescale information in the
context of risk management
Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel
Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2 degrees divergence can be produced by a circularly polarized laser pulse at an intensity of about 10(22) W/cm(2). (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775728]Physics, Fluids & PlasmasSCI(E)EI3ARTICLE1null2
Ultrashort PW laser pulse interaction with target and ion acceleration
We present the experimental results on ion acceleration by petawatt
femtosecond laser solid interaction and explore strategies to enhance ion
energy. The irradiation of micrometer thick (0.2 - 6.0 micron) Al foils with a
virtually unexplored intensity regime (8x10^19 W/cm^2 - 1x10^21 W/cm^2)
resulting in ion acceleration along the rear and the front surface target
normal direction is investigated. The maximum energy of protons and carbon
ions, obtained at optimised laser intensity condition (by varying laser energy
or focal spot size), exhibit a rapid intensity scaling as I^0.8 along the rear
surface target normal direction and I^0.6 along the front surface target normal
direction. It was found that proton energy scales much faster with laser energy
rather than the laser focal spot size. Additionally, the ratio of maximum ion
energy along the both directions is found to be constant for the broad range of
target thickness and laser intensities. A proton flux is strongly dominated in
the forward direction at relatively low laser intensities. Increasing the laser
intensity results in the gradual increase in the backward proton flux and leads
to almost equalisation of ion flux in both directions in the entire energy
range. These experimental findings may open new perspectives for applications.Comment: 6 pages, 5 figures, 3rd EAAC worksho
Tunable high-energy ion source via oblique laser pulse incidence on a double-layer target
The laser-driven acceleration of high quality proton beams from a
double-layer target, comprised of a high-Z ion layer and a thin disk of
hydrogen, is investigated with three-dimensional particle-in-cell simulations
in the case of oblique incidence of a laser pulse. It is shown that the proton
beam energy reaches its maximum at a certain incidence angle of the laser
pulse, where it can be much greater than the energy at normal incidence. The
proton beam propagates at some angle with respect to the target surface normal,
as determined by the proton energy and the incidence angle
Ising model with memory: coarsening and persistence properties
We consider the coarsening properties of a kinetic Ising model with a memory
field. The probability of a spin-flip depends on the persistence time of the
spin in a state. The more a spin has been in a given state, the less the
spin-flip probability is. We numerically studied the growth and persistence
properties of such a system on a two dimensional square lattice. The memory
introduces energy barriers which freeze the system at zero temperature. At
finite temperature we can observe an apparent arrest of coarsening for low
temperature and long memory length. However, since the energy barriers
introduced by memory are due to local effects, there exists a timescale on
which coarsening takes place as for the Ising model. Moreover the two point
correlation functions of the Ising model with and without memory are the same,
indicating that they belong to the same universality class.Comment: 10 pages, 7 figures; some figures and some comments adde
Spatial correlations in vote statistics: a diffusive field model for decision-making
We study the statistics of turnout rates and results of the French elections
since 1992. We find that the distribution of turnout rates across towns is
surprisingly stable over time. The spatial correlation of the turnout rates, or
of the fraction of winning votes, is found to decay logarithmically with the
distance between towns. Based on these empirical observations and on the
analogy with a two-dimensional random diffusion equation, we propose that
individual decisions can be rationalised in terms of an underlying "cultural"
field, that locally biases the decision of the population of a given region, on
top of an idiosyncratic, town-dependent field, with short range correlations.
Using symmetry considerations and a set of plausible assumptions, we suggest
that this cultural field obeys a random diffusion equation.Comment: 18 pages, 5 figures; added sociophysics references
- …
