12 research outputs found
Effect of iron oxide and silver nanoparticles on boar semen CASA motility and kinetics
ΔΕΝ ΔΙΑΤΙΘΕΤΑΙ ΠΕΡΙΛΗΨΗThe objective of the study was to investigate the potential toxic effect of iron oxide (Fe3O4) and silver (Ag/Fe) spherical nanoparticles (NPs) as alternative antimicrobial compounds on boar semen. The NPs’ minimum inhibitory concentration was determined applying the in vitro antimicrobial activity evaluation test and included in the experiment. Totally, 9 ejaculates (3 boars; 3 ejaculates/boar) were extended in BTS without antibiotics at 30×106 spermatozoa/mL and divided in 3 aliquots corresponding to the following groups: 1) Control group (C): extended semen without treatment; 2) Iron oxide group (Fe): extended semen with Fe3O4 NPs of diameter 40 nm (0.192 mg/mL semen); and 3) Silver group (Ag): extended semen with Ag/Fe NPs of diameter 30 nm, consisted of Ag and a 5% of zero-valent Fe (0.128 mg/mL semen). Semen samples of all groups were incubated at 17o C for 30 min following NPs’ removal through a magnetic field. All post treated samples were stored at 17o C for 48 h. Total motility (TM) and kinetics (progressive motility PM; rapid/medium/slow movement spermatozoa; static spermatozoa; VCL; VSL; VAP; LIN; STR; WOB; ALH; BCF; hyperactive spermatozoa) were evaluated by CASA system at 0, 24 and 48 h post treatment. Data were analyzed with a repeated measures mixed model. Group Fe did not differ from group C at any time point. TM and PM were lower at 24 h of storage in group Ag compared to groups C and Fe (all P<0.001). By 48 h of storage spermatozoa of group Ag were totally immotile and thus excluded from analysis. The comparison within groups and between storage time points showed that the values of TM, PM, VCL, VAP, ALH and BCF decreased after 24 h of storage in group Ag (all P<0.05), but not in groups C and Fe, while no significant differences were observed for the remaining parameters between successive time points within any group (P>0.05). In conclusion, Ag/Fe NPs demonstrated a harmful effect on boar spermatozoa, while the used concentration of the examined Fe3O4 NPs did not affect boar sperm CASA motility parameters enhancing further research about their application on semen handling
Effect of seasonal infertility period on boar sperm proteins and quality characteristics
ΔΕΝ ΔΙΑΤΙΘΕΤΑΙ ΠΕΡΙΛΗΨΗSwine seasonal infertility reduces the productivity and profitability of a pig farm. The main causes of this condition are elevated environmental temperatures and long photoperiod during the summer season. The aim of this study was to investigate which sperm proteins and parameters are affected during the period of seasonal infertility. Depending on the environmental temperatures, the period from October to June was considered as cold and the period from July to September as warm season. A total of 65 ejaculates from 18 boars were collected over a year. Each semen sample was evaluated for kinetics (Computer Assisted Semen Analyzer), morphology (Sperm Blue stain), viability (Propidium Iodide - Calcein AM stain), mitochondrial membrane potential (Rhodamine 123 – Propidium Iodide stain), membrane integrity and functionality (Hypo-osmotic swelling test) and sperm DNA integrity (Acridine Orange Test). Moreover, selected proteins (HSP90, GPX5, OPN) were detected and quantified. The kinetic parameters VSL, LIN and the midpiece abnormalities were significantly higher in the warm compared to the cold season (p<0.05), while a strong tendency towards higher values for HSP90 and GPX5 was observed in warm compared to cold season (p=0.07and p=0.06, respectively). In conclusion, among the boar sperm characteristics tested in our study, seasonal infertility period negatively affected VSL and LIN kinetics, while GPX5 seminal plasma enzyme and HSP90 sperm surface protein increased their sperm protective effects
Effect of Kappa-Casein and Beta-Lactoglobulin Loci on Milk Production Traits and Reproductive Performance of Holstein Cows
Use of enzyme-immunoassay for oestradiol-17β and progesterone quantification in canine serum
Effect of iron oxide and silver nanoparticles on boar semen CASA motility and kinetics
The objective of the study was to investigate the potential toxic effect of iron oxide (Fe3O4) and silver (Ag/Fe) spherical nanoparticles (NPs) as alternative antimicrobial compounds on boar semen. The NPs’ minimum inhibitory concentration was determined applying the in vitro antimicrobial activity evaluation test and included in the experiment. Totally, 9 ejaculates (3 boars; 3 ejaculates/boar) were extended in BTS without antibiotics at 30×106 spermatozoa/mL and divided in 3 aliquots corresponding to the following groups: 1) Control group (C): extended semen without treatment; 2) Iron oxide group (Fe): extended semen with Fe3O4 NPs of diameter 40 nm (0.192 mg/mL semen); and 3) Silver group (Ag): extended semen with Ag/Fe NPs of diameter 30 nm, consisted of Ag and a 5% of zero-valent Fe (0.128 mg/mL semen). Semen samples of all groups were incubated at 17o C for 30 min following NPs’ removal through a magnetic field. All post treated samples were stored at 17o C for 48 h. Total motility (TM) and kinetics (progressive motility PM; rapid/medium/slow movement spermatozoa; static spermatozoa; VCL; VSL; VAP; LIN; STR; WOB; ALH; BCF; hyperactive spermatozoa) were evaluated by CASA system at 0, 24 and 48 h post treatment. Data were analyzed with a repeated measures mixed model. Group Fe did not differ from group C at any time point. TM and PM were lower at 24 h of storage in group Ag compared to groups C and Fe (all P<0.001). By 48 h of storage spermatozoa of group Ag were totally immotile and thus excluded from analysis. The comparison within groups and between storage time points showed that the values of TM, PM, VCL, VAP, ALH and BCF decreased after 24 h of storage in group Ag (all P<0.05), but not in groups C and Fe, while no significant differences were observed for the remaining parameters between successive time points within any group (P>0.05). In conclusion, Ag/Fe NPs demonstrated a harmful effect on boar spermatozoa, while the used concentration of the examined Fe3O4 NPs did not affect boar sperm CASA motility parameters enhancing further research about their application on semen handling.</jats:p
Effect of seasonal infertility period on boar sperm proteins and quality characteristics
Swine seasonal infertility reduces the productivity and profitability of a pig farm. The main causes of this condition are elevated environmental temperatures and long photoperiod during the summer season. The aim of this study was to investigate which sperm proteins and parameters are affected during the period of seasonal infertility. Depending on the environmental temperatures, the period from October to June was considered as cold and the period from July to September as warm season. A total of 65 ejaculates from 18 boars were collected over a year. Each semen sample was evaluated for kinetics (Computer Assisted Semen Analyzer), morphology (Sperm Blue stain), viability (Propidium Iodide - Calcein AM stain), mitochondrial membrane potential (Rhodamine 123 – Propidium Iodide stain), membrane integrity and functionality (Hypo-osmotic swelling test) and sperm DNA integrity (Acridine Orange Test). Moreover, selected proteins (HSP90, GPX5, OPN) were detected and quantified. The kinetic parameters VSL, LIN and the midpiece abnormalities were significantly higher in the warm compared to the cold season (p<0.05), while a strong tendency towards higher values for HSP90 and GPX5 was observed in warm compared to cold season (p=0.07and p=0.06, respectively). In conclusion, among the boar sperm characteristics tested in our study, seasonal infertility period negatively affected VSL and LIN kinetics, while GPX5 seminal plasma enzyme and HSP90 sperm surface protein increased their sperm protective effects.</jats:p
