1,102 research outputs found
Power Corrections to Perturbative QCD and OPE in Gluon Green Functions
We show that QCD Green functions in Landau Gauge exhibit sizable
corrections to the expected perturbative behavior at energies as high as 10
GeV. We argue that these are due to a -condensate which does not vanish
in Landau gauge.Comment: 3 pages 1 figure lattice2001 (gaugetheories
IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation
We solve numerically the Schwinger-Dyson (SD hereafter) ghost equation in the
Landau gauge for a given gluon propagator finite at k=0 (alpha_gluon=1) and
with the usual assumption of constancy of the ghost-gluon vertex ; we show that
there exist two possible types of ghost dressing function solutions, as we have
previously inferred from analytical considerations : one singular at zero
momentum, satisfying the familiar relation alpha_gluon+2 alpha_ghost=0 between
the infrared exponents of the gluon and ghost dressing functions(in short,
respectively alpha_G and alpha_F) and having therefore alpha_ghost=-1/2, and
another which is finite at the origin (alpha_ghost=0), which violates the
relation. It is most important that the type of solution which is realized
depends on the value of the coupling constant. There are regular ones for any
coupling below some value, while there is only one singular solution, obtained
only at a critical value of the coupling. For all momenta k<1.5 GeV where they
can be trusted, our lattice data exclude neatly the singular one, and agree
very well with the regular solution we obtain at a coupling constant compatible
with the bare lattice value.Comment: 17 pages, 3 figures (one new figure and a short paragraph added
On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem
This brief note is devoted to a study of genuine non-perturbative corrections
to the Landau gauge ghost-gluon vertex in terms of the non-vanishing
dimension-two gluon condensate. We pay special attention to the kinematical
limit which the bare vertex takes for its tree-level expression at any
perturbative order, according to the well-known Taylor theorem. Based on our
OPE analysis, we also present a simple model for the vertex, in acceptable
agreement with lattice data.Comment: Final version published in JHE
O.P.E. and Power Corrections to the QCD coupling constant
Lattice data seems to show that power corrections should be convoked to
describe appropriately the transition of the QCD coupling constant running from
U.V. to I.R. domains. Those power corrections for the Landau-gauge MOM coupling
constant in a pure Yang-Mills theory (N_f=0) are analysed in terms of Operator
Product Expansion (O.P.E.) of two- and three-point Green functions, the gluon
condensate emerging from this study. The semi-classical picture given by
instantons can be also used to look for into the nature of the power
corrections and gluon condensate.Comment: 5 pages, talk given at XXX International Meeting on Fundamental
Physics, Jaca 200
Testing Landau gauge OPE on the Lattice with a Condensate
Using the operator product expansion we show that the correction
to the perturbative expressions for the gluon propagator and the strong
coupling constant resulting from lattice simulations in the Landau gauge are
due to a non-vanishing vacuum expectation value of the operator .
This is done using the recently published Wilson coefficients of the identity
operator computed to third order, and the subdominant Wilson coefficient
computed in this paper to the leading logarithm. As a test of the applicability
of OPE we compare the estimated from the gluon propagator and
the one from the coupling constant in the flavourless case. Both agree within
the statistical uncertainty: GeV.
Simultaneously we fit \Lams = 233(28) MeV in perfect agreement with previous
lattice estimates. When the leading coefficients are only expanded to two
loops, the two estimates of the condensate differ drastically. As a consequence
we insist that OPE can be applied in predicting physical quantities only if the
Wilson coefficients are computed to a high enough perturbative order.Comment: 15 pages, LaTex file with 5 figure
Are the low-momentum gluon correlations semiclassically determined?
We argue that low-energy gluodynamics can be explained in terms of
semi-classical Yang-Mills solutions by demonstrating that lattice gluon
correlation functions fit to instanton liquid predictions for low energies and,
after cooling, in the whole range.Comment: 4 pages, revtex
Roma versus Zaragoza
The Roma and Zaragoza actions for chiral fermions on the lattice are shown to
be essentially equivalent. The auxiliary fermion fields in the Roma model can
be integrated out, and the resulting action is a special case of the Zaragoza
approach. We use this result to perform a mean-field study of the phase diagram
of chiral Yukawa models in the Roma formulation.Comment: Contribution to Lattice '94 by A.J. van der Sijs, 3 pages PostScript
in uufiles forma
An Instanton Picture O.P.E. <A^2> Condensate?
Gluon two- and three-point Green Functions computed in Landau gauge from the
lattice show the existence of power corrections to the purely perturbative
expressions, that can be explained through an Operator Product Expansion as the
influence of a non gauge invariant mass dimension two condensate. The
relationship of this condensate with topological properties of QCD, namely
instantons, will be studied, giving a first estimate of the contribution of
instantons to this condensate based in the direct lattice measure, after a
cooling process, of the instanton liquid properties.Comment: Lattice2002(topology) contribution, 3 pages, 2 figure
- …
