904 research outputs found
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes
The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)
A Study of D0 --> K0(S) K0(S) X Decay Channels
Using data from the FOCUS experiment (FNAL-E831), we report on the decay of
mesons into final states containing more than one . We present
evidence for two Cabibbo favored decay modes, and
, and measure their combined branching fraction
relative to to be = 0.0106
0.0019 0.0010. Further, we report new measurements of
=
0.0179 0.0027 0.0026, = 0.0144 0.0032 0.0016,
and = 0.0208 0.0035 0.0021 where the first error is
statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
The evolution of transmission mode
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host-shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical vs. horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
NICE : A Computational solution to close the gap from colour perception to colour categorization
The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms
Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient
We compared autumn decomposition rates of European alder leaves at four sites along the Lasset–Hers River system, southern France, to test whether changes in litter decomposition rates from upstream (1,300 m elevation) to downstream (690 m) could be attributed to temperature-driven differences in microbial growth, shredder activity, or composition of the shredder community. Alder leaves lost 75–87% of original mass in 57 days, of which 46–67% could be attributed to microbial metabolism and 8–29% to shredder activity, with no trend along the river. Mass loss rates in both fine-mesh (excluding shredders) and coarse-mesh (including shredders) bags were faster at warm, downstream sites (mean daily temperature 7–8°C) than upstream (mean 1–2°C), but the differ- ence disappeared when rates were expressed in heat units to remove the temperature effect. Mycelial biomass did not correlate with mass loss rates. Faster mass loss rates upstream, after temperature correction, evidently arise from more efficient shredding by Nemourid stoneflies than by the Leuctra-dominated assemblage downstream. The influence of water temperature on decomposition rate is therefore expressed both directly, through microbial metabolism, and indirectly, through the structure of shredder commu- nities. These influences are evident even in cold water where temperature variation is small
The practice of 'doing' evaluation: Lessons learned from nine complex intervention trials in action
Background: There is increasing recognition among trialists of the challenges in understanding how particular 'real-life' contexts influence the delivery and receipt of complex health interventions. Evaluations of interventions to change health worker and/or patient behaviours in health service settings exemplify these challenges. When interpreting evaluation data, deviation from intended intervention implementation is accounted for through process evaluations of fidelity, reach, and intensity. However, no such systematic approach has been proposed to account for the way evaluation activities may deviate in practice from assumptions made when data are interpreted.Methods: A collective case study was conducted to explore experiences of undertaking evaluation activities in the real-life contexts of nine complex intervention trials seeking to improve appropriate diagnosis and treatment of malaria in varied health service settings. Multiple sources of data were used, including in-depth interviews with investigators, participant-observation of studies, and rounds of discussion and reflection.Results and discussion: From our experiences of the realities of conducting these evaluations, we identified six key 'lessons learned' about ways to become aware of and manage aspects of the fabric of trials involving the interface of researchers, fieldworkers, participants and data collection tools that may affect the intended production of data and interpretation of findings. These lessons included: foster a shared understanding across the study team of how individual practices contribute to the study goals; promote and facilitate within-team communications for ongoing reflection on the progress of the evaluation; establish processes for ongoing collaboration and dialogue between sub-study teams; the importance of a field research coordinator bridging everyday project management with scientific oversight; collect and review reflective field notes on the progress of the evaluation to aid interpretation of outcomes; and these approaches should help the identification of and reflection on possible overlaps between the evaluation and intervention.Conclusion: The lessons we have drawn point to the principle of reflexivity that, we argue, needs to become part of standard practice in the conduct of evaluations of complex interventions to promote more meaningful interpretations of the effects of an intervention and to better inform future implementation and decision-making. © 2014 Reynolds et al.; licensee BioMed Central Ltd
Insulin-like signalling to the maternal germline controls progeny response to osmotic stress
In 1893 August Weismann proposed that information about the environment could not pass from somatic cells to germ cells, a hypothesis now known as the Weismann barrier. However, recent studies have indicated that parental exposure to environmental stress can modify progeny physiology and that parental stress can contribute to progeny disorders. The mechanisms regulating these phenomena are poorly understood. We report that the nematode Caenorhabditis elegans can protect itself from osmotic stress by entering a state of arrested development and can protect its progeny from osmotic stress by increasing the expression of the glycerol biosynthetic enzyme GPDH-2 in progeny. Both of these protective mechanisms are regulated by insulin-like signalling: insulin-like signalling to the intestine regulates developmental arrest, while insulin-like signalling to the maternal germline regulates glycerol metabolism in progeny. Thus, there is a heritable link between insulin-like signalling to the maternal germline and progeny metabolism and gene expression. We speculate that analogous modulation of insulin-like signalling to the germline is responsible for effects of the maternal environment on human diseases that involve insulin signalling, such as obesity and type-2 diabetes
- …
