12,360 research outputs found
BOM_vl WP6.2 Demonstrator: Study of bandwidth needs and possible connectivity for a digital archive in Flanders
BOM_vl WP6.3 - 6.4: Demonstrator: Demonstration techniques for future proof information archival and decoding and study of CAPEX/OPEX of current and future storage technologies and Scalability tests for ingest, disclosure and IPMP techniques
Levels of discontinuity, limit-computability, and jump operators
We develop a general theory of jump operators, which is intended to provide
an abstraction of the notion of "limit-computability" on represented spaces.
Jump operators also provide a framework with a strong categorical flavor for
investigating degrees of discontinuity of functions and hierarchies of sets on
represented spaces. We will provide a thorough investigation within this
framework of a hierarchy of -measurable functions between arbitrary
countably based -spaces, which captures the notion of computing with
ordinal mind-change bounds. Our abstract approach not only raises new questions
but also sheds new light on previous results. For example, we introduce a
notion of "higher order" descriptive set theoretical objects, we generalize a
recent characterization of the computability theoretic notion of "lowness" in
terms of adjoint functors, and we show that our framework encompasses ordinal
quantifications of the non-constructiveness of Hilbert's finite basis theorem
A generalization of a theorem of Hurewicz for quasi-Polish spaces
We identify four countable topological spaces , , , and
which serve as canonical examples of topological spaces which fail to be
quasi-Polish. These four spaces respectively correspond to the , ,
, and -separation axioms. is the space of rationals, is
the natural numbers with the cofinite topology, is an infinite chain
without a top element, and is the set of finite sequences of natural
numbers with the lower topology induced by the prefix ordering. Our main result
is a generalization of Hurewicz's theorem showing that a co-analytic subset of
a quasi-Polish space is either quasi-Polish or else contains a countable
-subset homeomorphic to one of these four spaces
ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
Current speaker verification techniques rely on a neural network to extract
speaker representations. The successful x-vector architecture is a Time Delay
Neural Network (TDNN) that applies statistics pooling to project
variable-length utterances into fixed-length speaker characterizing embeddings.
In this paper, we propose multiple enhancements to this architecture based on
recent trends in the related fields of face verification and computer vision.
Firstly, the initial frame layers can be restructured into 1-dimensional
Res2Net modules with impactful skip connections. Similarly to SE-ResNet, we
introduce Squeeze-and-Excitation blocks in these modules to explicitly model
channel interdependencies. The SE block expands the temporal context of the
frame layer by rescaling the channels according to global properties of the
recording. Secondly, neural networks are known to learn hierarchical features,
with each layer operating on a different level of complexity. To leverage this
complementary information, we aggregate and propagate features of different
hierarchical levels. Finally, we improve the statistics pooling module with
channel-dependent frame attention. This enables the network to focus on
different subsets of frames during each of the channel's statistics estimation.
The proposed ECAPA-TDNN architecture significantly outperforms state-of-the-art
TDNN based systems on the VoxCeleb test sets and the 2019 VoxCeleb Speaker
Recognition Challenge.Comment: proceedings of INTERSPEECH 202
Numerical simulation of an array of heaving floating point absorber wave energy converters using OpenFOAM
In this paper we use the CFD toolbox OpenFOAM to perform numerical
simulations of multiple floating point absorber Wave Energy Converters (WECs) in a
numerical wave basin. The two-phase Navier-Stokes fluid solver is coupled with a motion
solver to simulate the wave-induced rigid body heave motion. The key of this paper is
to extend numerical simulations of a single WEC unit to multiple WECs and to tackle the issues of
modelling individual floating objects close to each other in an array lay-out. The developed
numerical model is validated with laboratory experiments for free decay tests and for
a regular wave train using two or five WECs in the array. For all the simulations presented, a good
agreement is found between the numerical and experimental results for the WECs’ heave
motions, the surge forces on the WECs and the perturbed wave field. As a result, our coupled
CFD–motion solver proofs to be a suitable and accurate toolbox for the study of
wave-structure interaction problems of multiple floating bodies in an array configuration
- …
