3,297 research outputs found
A comparison between dinosaur footprints from the Middle Jurassic of the Isle of Skye, Scotland, UK, and Shell, Wyoming, USA
Measurements of Middle Jurassic tridactyl dinosaur tracks from the Bathonian, Lealt Shale, Valtos Sandstone, Duntulm and Kilmaluag formations of the Isle of Skye, UK, are compared to the same measurements taken for dinosaur footprints from the Bajocian, Gypsum Spring and the Bathonian, Sundance Formation of the Bighorn Basin, Wyoming, USA. Principal component analysis of the data suggests that the smaller footprints from the Valtos Sandstone and Kilmaluag formations are indistinguishable from the footprints of the Sundance Formation. The single footprint from the Lealt Shale Formation is similar to the larger footprints from the Valtos Sandstone Formation. The footprints from the Duntulm and Gypsum Springs formations form distinct groupings from all other footprints. Four different groupings of dinosaur footprints can be recognized from the principal component analysis that may represent at least four different types of dinosaur
Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise
© 2015 Elsevier B.V. Despite the prevalence of vibration produced by anthropogenic activities impacting the seabed there are few data and little information as to whether these are detected by crustaceans and whether they interfere with their behaviour. Here the sensitivity of unconditioned Pagurus bernhardus to substrate-borne vibration was quantified by exposure to sinusoidal vibrations of 5-410Hz of varied amplitudes using the staircase method of threshold determination, with threshold representing the detection of the response and two behavioural responses used as reception indicators: movement of the second antenna and onset or cessation of locomotion. Thresholds were compared to measured vibrations close to anthropogenic operations and to the time in captivity prior to tests. Behaviour varied according to the strength of the stimulus with a significant difference in average threshold values between the two behavioural indicators, although there was an overlap between the two, with overall sensitivity ranging from 0.09-0.44ms -2 (root mean squared, RMS). Crabs of shortest duration in captivity prior to tests had significantly greater sensitivity to vibration, down to 0.02ms -2 (RMS). The sensitivity of P. bernhardus fell well within the range of vibrations measured near anthropogenic operations. The data indicate that anthropogenic substrate-borne vibrations have a clear effect on the behaviour of a common marine crustacean. The study emphasises that these vibrations are an important component of noise pollution that requires further attention to understand the long term effects on marine crustaceans
Sensitivity of the mussel Mytilus edulis to substrate‑borne vibration in relation to anthropogenically generated noise
© 2015 Inter-Research. Many anthropogenic activities in the oceans involve direct contact with the seabed (for example pile driving), creating radiating particle motion waves. However, the consequences of these waveforms to marine organisms are largely unknown and there is little information on the ability of invertebrates to detect vibration, or indeed the acoustic component of the signal. We quantified sensitivity of the marine bivalve Mytilus edulis to substrate-borne vibration by exposure to vibration under controlled conditions. Sinusoidal excitation by tonal signals at frequencies within the range 5 to 410 Hz was applied during the tests, using the 'staircase' method of threshold determination. Thresholds were related to mussel size and to seabed vibration data produced by anthropogenic activities. Clear behavioural changes were observed in response to the vibration stimulus. Thresholds ranged from 0.06 to 0.55 m s -2 (acceleration, root mean squared), with valve closure used as the behavioural indicator of reception and response. Thresholds were shown to be within the range of vibrations measured in the vicinity of anthropogenic operations such as pile driving and blasting. The responses show that vibration is likely to impact the overall fitness of both individuals and mussel beds of M. edulis due to disruption of natural valve periodicity, which may have ecosystem and commercial implications. The observed data provide a valuable first step to understanding the impacts of such vibration upon a key coastal and estuarine invertebrate which lives near industrial and construction activity, and illustrate that the role of seabed vibration should not be underestimated when assessing the impacts of noise pollution
To signal or not to signal? Chemical communication by urine-borne signals mirrors sexual conflict in crayfish
Background: Sexual selection theory predicts that females, being the limiting sex, invest less in courtship signals than males. However, when chemical signals are involved it is often the female that initiates mating by producing stimuli that inform about sex and/or receptivity. This apparent contradiction has been discussed in the literature as 'the female pheromone fallacy'. Because the release of chemical stimuli may not have evolved to elicit the male's courtship response, whether these female stimuli represent signals remains an open question. Using techniques to visualise and block release of urine, we studied the role of urine signals during fighting and mating interactions of crayfish (Pacifastacus leniusculus). Test individuals were blindfolded to exclude visual disturbance from dye release and artificial urine introduction. Results: Staged female-male pairings during the reproductive season often resulted in male mating attempts. Blocking female urine release in such pairings prevented any male courtship behaviour. Artificial introduction of female urine re-established male mating attempts. Urine visualisation showed that female urine release coincides with aggressive behaviours but not with female submissive behaviour in reproductive interactions as well as in intersexual and intrasexual fights. In reproductive interactions, females predominately released urine during precopulatory aggression; males subsequently released significantly less urine during mating than in fights. Conclusions: Urine-blocking experiments demonstrate that female urine contains sex-specific components that elicit male mating behaviour. The coincidence of chemical signalling and aggressive behaviour in both females and males suggests that urine release has evolved as an aggressive signal in both sexes of crayfish. By limiting urine release to aggressive behaviours in reproductive interactions females challenge their potential mating partners at the same time as they trigger a sexual response. These double messages should favour stronger males that are able to overcome the resistance of the female. We conclude that the difference between the sexes in disclosing urine-borne information reflects their conflicting interests in reproduction. Males discontinue aggressive urine signalling in order to increase their chances of mating. Females resume urine signalling in connection with aggressive behaviour, potentially repelling low quality or sexually inactive males while favouring reproduction with high quality males
- …
