43 research outputs found

    Loss of Hairless Confers Susceptibility to UVB-Induced Tumorigenesis via Disruption of NF-kappaB Signaling

    Get PDF
    In order to model squamous cell carcinoma development in vivo, researchers have long preferred hairless mouse models such as SKH-1 mice that have traditionally been classified as ‘wild-type’ mice irrespective of the genetic factors underlying their hairless phenotype. The work presented here shows that mutations in the Hairless (Hr) gene not only result in the hairless phenotype of the SKH-1 and Hr−/− mouse lines but also cause aberrant activation of NFκB and its downstream effectors. We show that in the epidermis, Hr is an early UVB response gene that regulates NFκB activation and thereby controls cellular responses to irradiation. Therefore, when Hr expression is decreased in Hr mutant animals there is a corresponding increase in NFκB activity that is augmented by UVB irradiation. This constitutive activation of NFκB in the Hr mutant epidermis leads to the stimulation a large variety of downstream effectors including the cell cycle regulators cyclin D1 and cyclin E, the anti-apoptosis protein Bcl-2, and the pro-inflammatory protein Cox-2. Therefore, Hr loss results in a state of uncontrolled epidermal proliferation that promotes tumor development, and Hr mutant mice should no longer be considered merely hairless 'wild-type' mice. Instead, Hr is a crucial UVB response gene and its loss creates a permissive environment that potentiates increased tumorigenesis

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Management of Severe TBI-A Review of Recent Literature

    Get PDF
    INTRODUCTION Traumatic Brain Injury (TBI) is the result of sudden trauma causing damage to the brain. TBI can occur when the head strongly and abruptly changes direction or contacts an object, or when an object penetrates the skull and brain tissue. (Figure 1 – TBI). CDC estimated that in 2010, TBI, alone and in conjunction with other injuries, accounted for approximately 2.5 million ED visits, hospitalizations, and deaths in the United States. Children aged 0–4 years, adolescents aged 15–19 years, and, most significantly, adults aged 75 years and older are the most likely to sustain a TBI and seek medical care1. The leading cause of non-fatal TBI in the U.S. is falls and the leading cause of TBI-related fatalities is motor vehicle accidents2. As a heterogeneous condition, TBI is conventionally categorized as mild, moderate, or severe. The most useful classification system is the Glasgow Coma Scale (GCS) which is based on level of consciousness as assessed by eye, motor, and verbal performance. A GCS score of 13 to 15 classifies a mild TBI, 9 to 12 a moderate TBI, and a score of 3 to 8 defines a severe TBI (sTBI). Each year, the direct and indirect medical cost of TBI is nearly $76.5 billion, with 90% directed at severe TBI3. Although little can be done to reverse the initial, or primary, brain injury caused by trauma, care is directed at stabilizing the patient and preventing further, or secondary, brain injury. Concerns of delayed non-mechanical damage include swelling, inadequate oxygenation, lack of autoregulation, and metabolic dysfunction. Elevated intracranial pressure (ICP), often the result of increasing mass effect from hematomas and contusions, diffuse cerebral edema, or hydrocephalus, is an important promoter of secondary brain injury and is associated with worse neurological outcomes in patients after TBI. Consequently, medical and surgical efforts attempt to normalize ICP in order to maintain cerebral blood flow and prevent parenchymal death. (Figure 2 and 3– ICPmonitor1 and 2). In the past 5 years, three landmark trials have explored the beneficence of three individual techniques for mitigating secondary brain injury associated with intracranial hypertension. Although the following investigations do not isolate and then evaluate ICP treatment, they do smear the guidelines of practice for approach and management of sTBI

    Tumor after tumor in two years: A rare presentation of brain glioma, meningioma and supraclavicular meningiosarcoma

    No full text
    Introduction: Low-grade gliomas (LGG) and meningioma are common brain tumors but it is rare for both tumors to be diagnosed in a same patient. Furthermore, it is rare for the same patient to develop an extracranial primary or metastasis meningioma. Probably this is the first case report of a second primary with extracranial meningiosarcoma in literature. Case Report: We present a rare case of brain atypical meningioma which occurred shortly following craniotomy and radiotherapy after being diagnosed as brain glioma (diffused astrocytoma) in a 22-year-old Malay female. Tumors occurred at different sites of the brain namely the atypical meningioma at the temporal and the initial glioma at the frontal region. Subsequently, patient developed a right supraclavicular meningiosarcoma. We believe that the patient could have developed radiation-induced meningioma but the transformation period is very short. The patient's mother had history of brain tumor that added into the risk factors in this patient. However, we are unable to confirm whether the supraclavicular mass was a primary supraclavicular meningiosarcoma or metastatic meningiosarcoma progression from atypical meningioma. Conclusion: There are multiple variant revealed associations of glioma and meningioma. However, these variant could be coincidental. There is a possibility that one tumor acts locally as an irritating factor that induced another unrelated neoplasm. Relation of two or more types of cancers might lead to new therapies, provided target surveillance for cancer patients and risk factors or causal agent are identified. </jats:p
    corecore