48 research outputs found
Bias in the prediction of genetic gain due to mass and half-sib selection in random mating populations
The prediction of gains from selection allows the comparison of breeding methods and selection strategies, although these estimates may be biased. The objective of this study was to investigate the extent of such bias in predicting genetic gain. For this, we simulated 10 cycles of a hypothetical breeding program that involved seven traits, three population classes, three experimental conditions and two breeding methods (mass and half-sib selection). Each combination of trait, population, heritability, method and cycle was repeated 10 times. The predicted gains were biased, even when the genetic parameters were estimated without error. Gain from selection in both genders is twice the gain from selection in a single gender only in the absence of dominance. The use of genotypic variance or broad sense heritability in the predictions represented an additional source of bias. Predictions based on additive variance and narrow sense heritability were equivalent, as were predictions based on genotypic variance and broad sense heritability. The predictions based on mass and family selection were suitable for comparing selection strategies, whereas those based on selection within progenies showed the largest bias and lower association with the realized gain
Using semidefinite programming to optimize unequal deployment of genotypes to a clonal seed orchard
Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics
<p>Abstract</p> <p>Background</p> <p>The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile <it>Pinus radiata </it>trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics.</p> <p>Results</p> <p>Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA.</p> <p>Conclusions</p> <p>Microarray expression profiles in <it>Pinus radiata </it>juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood.</p
Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range
Background: Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology: We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (FST) and quantitative genetic differentiation (QST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion: In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h 2 ns = 0.4360.18, CVA = 4.4%). QST was significantly lower than FST, indicating uniform selection for P50, rather than genetic drift. Putativ
Cytogenetic analysis of reciprocal hybrids and their parents between Larix leptolepis and Larix gmelinii: implications for identifying hybrids
Growth and wood basic density of acacia hybrid clones at three locations in Vietnam
Field trials testing a total of 27 clones of the interspecific hybrid Acacia mangium x A. auriculiformis and seedling controls of the parental species were established at Ba Vi and Yen Thanh in the north of Vietnam and Long Thanh in the south. At both Ba Vi and Yen Thanh there were significant (P P A. mangium was similar, with a genetically improved seedlot of A. mangium displaying the best DBH. Mean wood basic density at breast height of the acacia hybrid clones was 539 kg m−3 at Yen Thanh at age 8 years, and 473 kg m−3 at Long Thanh at age 5 years; density for A. mangium at Long Thanh was only slightly lower than the hybrid clones at 461 kg m−3. Linear regressions of Pilodyn penetration (PP) at breast height on wood basic density explained 60% of the variance in density of treatments (clones and control seedlots) at Yen Thanh and 36% at Long Thanh. There were significant differences between hybrid clones in PP at all three trial sites. Clonal DBH performance was not strongly correlated across the three trial sites; Pearson correlations of clone mean DBH between pairs of sites ranged from −0.47 to 0.20. Clonal rankings for PP were more stable, with Pearson correlations between pairs of sites ranging from r = 0.71 to 0.78
Clonal stability in Pinus radiata across New Zealand and Australia. I. Growth and form traits
Inheritance of growth and survival in two 9-year-old, open-pollinated progenies of an advanced breeding population of Chinese firs in southeastern China
Managing wood production from small grower acacia hybrid plantations on eroded soils in central Vietnam
Additive and non-additive genetic parameters for multipurpose traits in a clonally replicated incomplete factorial test of Castanea spp.
14 páginas, 3 tablas, 3 figurasSecond-year traits of growth, stem form, terminal flushing, and survival were assessed in 1770 ramets from 295 clones of 16 full-sib families of Castanea spp. Additive, dominance, and epistatic genetic variances were estimated in a clonally replicated incomplete 5 × 4 factorial test. Parents of the mating design were selected mainly on their phenotypes for wood quality (Castanea sativa traditional varieties) and their proven resistance to Phytophthora spp. (Asiatic species and Castanea crenata × C. sativa hybrids). Additive genetic variances were estimated to be 1.7–9 times greater than the dominance components. Inferred epistatic variance components showed a significant role in controlling growth traits and branch length. Narrow- and broad-sense heritability estimates showed that terminal flushing date was the most heritable trait, followed by height. The high estimates of half-sib, full-sib, and clonal mean heritabilities for almost all traits suggest that different strategies of backwards and forwards selection could be proposed. The ranking of the breeding values of parents allow us to select the best parents for new crosses and extend the mating design. Favorable genetic correlations were found between growth traits and straightness, so multi-trait selection looks promising. Our results provide the first information on the partitioning of genetic variance in Castanea spp. and a starting point for devising new selection strategies.This study was supported by the project “Conservation and breeding of chestnut (2013–2015),” funded by the sub-measure 323.2.3 of the Plan “Conservation and improvement of natural heritage, convergence region” from European Agricultural Fund for Rural Development (EAFRD).Peer reviewe
