12 research outputs found
Occupational cooling practices of emergency first responders in the United States: A survey
This is an accepted manuscript of an article published by Taylor & Francis in Temperature on 29/07/2018, available online: https://doi.org/10.1080/23328940.2018.1493907
The accepted version of the publication may differ from the final published version.© 2018 Informa UK Limited, trading as Taylor & Francis Group. Despite extensive documentation directed specifically toward mitigating thermal strain of first responders, we wished to ascertain the degree to which first responders applied cooling strategies, and what opinions are held by the various agencies/departments within the United States. An internet-based survey of first responders was distributed to the International Association of Fire Chiefs, International Association of Fire Firefighters, National Bomb Squad Advisory Board and the USA Interagency Board and their subsequent departments and branches. Individual first responder departments were questioned regarding the use of pre-, concurrent, post-cooling, types of methods employed, and/or reasons why they had not incorporated various methods in first responder deployment. Completed surveys were collected from 119 unique de-identified departments, including those working in law enforcement (29%), as firefighters (29%), EOD (28%) and HAZMAT technicians (15%). One-hundred and eighteen departments (99%) reported heat strain/illness to be a risk to employee safety during occupational duties. The percentage of departments with at least one case of heat illness in the previous year were as follows: fire (39%) HAZMAT (23%), EOD (20%) and law enforcement (18%). Post-cooling was the scheduled cooling method implemented the most (63%). Fire departments were significantly more likely to use post-cooling, as well as combine two types of scheduled cooling compared to other departments. Importantly, 25% of all departments surveyed provided no cooling whatsoever. The greatest barriers to personnel cooling were as follows–availability, cost, logistics, and knowledge. Our findings could aid in a better understanding of current practices and perceptions of heat illness and injury prevention in United States first responders. Abbreviations: EOD: explosive ordnance disposal; HAZMAT: hazardous materials.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Published versio
Copeptin reflects physiological strain during thermal stress.
PURPOSE: To prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses. METHODS: Volunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine. RESULTS: There was a significant (P 38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L(-1)) and creatinine (10 vs. 2 μmol L(-1)), but no differences in cortisol, free normetanephrine or osmolality. CONCLUSIONS: Changes in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses
Individualized model of human thermoregulation for the simulation of heat stress response
The effect of cooling vests on physiological and perceptual responses: a systematic review
Heat training increases exercise capacity in hot but not in temperate conditions: a mechanistic counter-balanced cross-over study
Exercise cardiorespiratory and thermoregulatory responses in normoxic, hypoxic, and hot environment following 10-day continuous hypoxic exposure
We examined the effects of acclimatization to normobaric hypoxia on aerobic performance and exercise thermoregulatory responses under normoxic, hypoxic and hot conditions. Twelve males performed tests of maximal oxygen uptake (V̇O2max) in normoxic (NOR), hypoxic (13.5% FiO2; HYP) and hot (35℃, 50% RH; HE) conditions in a randomized manner before and after a 10-day continuous normobaric hypoxic exposure (FiO2 = 13.65(0.35)%, PiO2 = 87(3) mmHg). The acclimatization protocol included daily exercise (60min @ 50% hypoxia-specific peak power output, Wpeak). All maximal tests were preceded by a steady-state exercise (30 min at 40% Wpeak) to assess the sweating response. Hematological data were assessed from venous blood samples obtained before and after acclimatization. V̇O2max increased by 10.7% (P = 0.002) and 7.9% (P = 0.03) from pre- to post-acclimatization in NOR and HE, respectively, whereas no differences were found in HYP (pre: 39.9(3.8) vs post: 39.4(5.1) mL.kg-1.min-1, P = 1.0). However, the increase in V̇O2max did not translate into increased Wpeak in either NOR or HE. Maximal heart rate and ventilation remained unchanged following acclimatization. Νo differences were noted in the sweating gain and thresholds independent of the acclimatization or environmental conditions. Hypoxic acclimatization markedly increased hemoglobin (P &lt; 0.001), hematocrit (P &lt; 0.001) and extracellular HSP72 (P = 0.01). These data suggest that 10 days of normobaric hypoxic acclimatization combined with moderate-intensity exercise training improves V̇O2max in NOR and HE, but does not seem to affect exercise performance or thermoregulatory responses in any of the tested environmental conditions.</p
