36 research outputs found
Determinants of patient recruitment in a multicenter clinical trials group: trends, seasonality and the effect of large studies
BACKGROUND: We examined whether quarterly patient enrollment in a large multicenter clinical trials group could be modeled in terms of predictors including time parameters (such as long-term trends and seasonality), the effect of large trials and the number of new studies launched each quarter. We used the database of all clinical studies launched by the AIDS Clinical Trials Group (ACTG) between October 1986 and November 1999. Analyses were performed in two datasets: one included all studies and substudies (n = 475, total enrollment 69,992 patients) and the other included only main studies (n = 352, total enrollment 57,563 patients). RESULTS: Enrollment differed across different months of the year with peaks in spring and late fall. Enrollment accelerated over time (+27 patients per quarter for all studies and +16 patients per quarter for the main studies, p < 0.001) and was affected by the performance of large studies with target sample size > 1,000 (p < 0.001). These relationships remained significant in multivariate autoregressive modeling. A time series based on enrollment during the first 32 quarters could forecast adequately the remaining 21 quarters. CONCLUSIONS: The fate and popularity of large trials may determine the overall recruitment of multicenter groups. Modeling of enrollment rates may be used to comprehend long-term patterns and to perform future strategic planning
Utilizing individual fish biomass and relative abundance models to map environmental niche associations of adult and juvenile targeted fishes
Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at different life-history stages is a significant knowledge gap. Species distribution models were used to examine patterns in the relative abundance, individual biomass estimates and environmental niche associations of different life stages of three iconic West Australian fishes. Continuous predictive maps describing the spatial distribution of abundance and individual biomass of the study species were created as well predictive hotspot maps that identify possible areas for aggregation of individuals of similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The models and maps indicate that processes driving the abundance patterns could be different from the body size associated demographic processes throughout an individual's life cycle. Incorporating life-history in the spatially explicit management plans can ensure that critical habitat of the vulnerable stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance connectivity between various functional areas (e.g. nursery areas and adult populations) which, in turn, can improve the abundance of targeted species as well as other fish species relying on healthy ecosystem functioning
Low genetic and phenotypic divergence in a contact zone between freshwater and marine sticklebacks: gene flow constrains adaptation
Statistical and integrative system-level analysis of DNA methylation data
Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are thought to capture and mediate the effects of genetic and environmental risk factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges and algorithms associated with drawing inferences from DNA methylation data, including cell-type heterogeneity, feature selection, reverse causation and system-level analyses that require integration with other data types such as gene expression, genotype, transcription factor binding and other epigenetic information
The Fourth International Symposium on Genetic Disorders of the Ras/MAPK pathway.
The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation-arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. � 2016 Wiley Periodicals, Inc
