144 research outputs found
Immediate thoracotomy for penetrating injuries: Ten years' experience at a Dutch level I trauma center
Background: An emergency department thoracotomy (EDT) or an emergency thoracotomy (ET) in the operating theater are both beneficial in selected patients following thoracic penetrating injuries. Since outcome-descriptive European studies are lacking, the aim of this retrospective study was to evaluate ten years of experience at a Dutch level I trauma center. Method: Data on patients who underwent an immediate thoracotomy after sustaining a penetrating thoracic injury between October 2000 and January 2011 were collected from the trauma registry and hospital files. Descriptive and univariate analyses were performed. Results: Among 56 patients, 12 underwent an EDT and 44 an ET. Forty-six patients sustained one or multiple stab wounds, versus ten with one or multiple gunshot wounds. Patients who had undergone an EDT had a lower GCS (p < 0. 001), lower pre-hospital RTS and hospital triage RTS (p < 0. 001 and p = 0. 009, respectively), and a lower SBP (p = 0. 038). A witnessed loss of signs of life generally occurred in EDT patients and was accompanied by 100 % mortality. Survival following EDT was 25 %, which was significantly lower than in the ET group (75 %; p = 0. 002). Survivors had lower ISS (p = 0. 011), lower rates of pre-hospital (p = 0. 031) and hospital (p = 0. 003) hemodynamic instability, and a lower prevalence of concomitant abdominal injury (p = 0. 002). Conclusion: The overall survival rate in our study was 64 %. The outcome of immediate thoracotomy performed in this level I trauma center was similar to those obtained in high-incidence regions like the US and South Africa. This suggests that trauma units where immediate thoracotomies are not part of the daily routine can achieve similar results, if properly trained
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship
Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the
quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with
transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured
by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is
observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates
jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for
low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p
collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured
for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as
well as medium-response effects
Simulation-based Estimation Methods for Financial Time Series Models
Published in Handbook of computational finance, 2010, https://doi.org/10.1007/978-3-642-17254-0_15</p
A search for rare B → Dμ+μ− decays
A search for rare B→Dμ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. No significant signals are observed in the non-resonant μ+μ− modes, and upper limits of B(B0→D ̄ ̄ ̄ ̄0μ+μ−)<5.1×10−8, B(B+→D+sμ+μ−)<3.2×10−8, B(B0s→D ̄ ̄ ̄ ̄0μ+μ−)<1.6×10−7 and fc/fu⋅B(B+c→D+sμ+μ−)<9.6×10−8 are set at the 95\% confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/ψ→μ+μ− decay. The branching fraction of B+c→D+sJ/ψ multiplied by the fragmentation-fraction ratio is measured to be fc/fu⋅B(B+c→D+sJ/ψ)=(1.63±0.15±0.13)×10−5, where the first uncertainty is statistical and the second systematic
Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+
Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
Reactive oxygen and nitrogen species in sepsis-induced hepatic microvascular dysfunction
The mediating role of general self-efficacy in the association between perceived social support and oral health-related quality of life after initial periodontal therapy
- …
