22 research outputs found

    High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    Get PDF
    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment

    Comparative Analyses by Sequencing of Transcriptomes during Skeletal Muscle Development between Pig Breeds Differing in Muscle Growth Rate and Fatness

    Get PDF
    Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement

    Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells

    Get PDF
    Senescence, the state of permanent cell cycle arrest, has been associated with endothelial cell dysfunction and atherosclerosis. The cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the G1/S cell cycle checkpoint and are essential for determining whether a cell enters into an arrested state. The homeodomain transcription factor MEOX2 is an important regulator of vascular cell proliferation and is a direct transcriptional activator of both p21CIP1/WAF1 and p16INK4a. MEOX1 and MEOX2 have been shown to be partially functionally redundant during development, suggesting that they regulate similar target genes in vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1 and p16INK4a expression and induce endothelial cell cycle arrest. Our results demonstrate for the first time that MEOX1 regulates the MEOX2 target genes p21CIP1/WAF1 and p16INK4a. In addition, increased expression of either of the MEOX homeodomain transcription factors leads to cell cycle arrest and endothelial cell senescence. Furthermore, we show that the mechanism of transcriptional activation of these cyclin dependent kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate p16INK4a in a DNA binding dependent manner, whereas they induce p21CIP1/WAF1 in a DNA binding independent manner

    Identification and Characterization of a Mef2 Transcriptional Activator in Schistosome Parasites

    Get PDF
    Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences

    Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa

    Get PDF

    EXCLUSION OF LINKAGE OF SCHIZOPHRENIA TO THE GENE FOR THE DOPAMINE D2 RECEPTOR (DRD2) AND CHROMOSOME 11Q TRANSLOCATION SITES

    No full text
    There have been previous reports of a 1q43;11q21 translocation cosegregating with schizophrenia and a 9p22;11q22.3 translocation cosegregating with manic depression. In addition, the genes for the dopamine D2 receptor and for tyrosinase both map to chromosome 11q. Three 11q DNA markers were used to investigate 23 pedigrees containing multiple cases of schizophrenia. Strongly negative led scores were obtained, providing evidence against linkage over a 70 cM region which included both translocation sites and both candidate genes.</p

    Linkage study of the D-5 dopamine receptor gene (DRD5) in multiplex Icelandic and English schizophrenia pedigrees

    No full text
    Objective: The authors investigated the possibility that genetic variation or mutation of the dopamine D-5 receptor gene might modify susceptibility to schizophrenia. Method: Twenty-three Icelandic and English pedigrees containing multiple cases of schizophrenia were genotyped by using a highly informative microsatellite for the D-5 dopamine receptor gene DRD5. Results: By means of three different affection models, negative lod scores were obtained under assumptions of autosomal dominant and recessive inheritance. There was no evidence for locus heterogeneity. Nonparametric extended relative pair analysis also produced negative results. Conclusions: These data indicate that mutations of the D-5 dopamine receptor gene ave not a major cause of schizophrenia in these pedigrees. Because of the probable existence of locus heterogeneity, the D-5 receptor gene may be of etiologic importance in other families with schizophrenia.</p

    A functional screen for regulators of CKDN2A reveals MEOX2 as a transcriptional activator of INK4a.

    Get PDF
    The CDKN2A locus encodes two important tumor suppressors, INK4a and ARF, which respond to oncogenic stresses by inducing cellular senescence. We conducted a genome-scale cDNA overexpression screen using a reporter containing INK4a regulatory sequences to identify novel transcriptional activators of this locus. This screen revealed 285 cDNAs that putatively regulate the transcriptional activation of INK4a. Of these, 56 are annotated as transcription factors, including two previously reported activators of the locus, ETS2 and JUNB. Fourteen genes were further validated for activity and specificity, including several homeodomain proteins. We found that the transcription of one of these, the homeodomain protein MEOX2 (GAX) is enhanced in primary cells during the induction of senescence, and forced expression of this protein results in the induction of premature senescence. We further demonstrate that MEOX2-induced senescence is dependent upon INK4a activity, and chromatin immunoprecipitation studies indicate that MEOX2 directly binds the INK4a promoter. These results support a role for this homeodomain protein as a direct regulator of INK4a transcription and senescence in human cells
    corecore