357 research outputs found
Improved observer dependent perception of weak edges when scanning an image in real time indicated by introducing 1/f noise into the primary visual cortex V1. Theory and experimental support
We present results of a new process for generating 1/f type noise sequences and introducing the noise in the primary visual cortex which then enables improved perception of weak edges when an observer is scanning a complex image in real time to detect detail such as in mammogram reading sessions. It can be explained by an adaptation of information theory for functional rather than previous task-based methods for formulating processes for edge formation in early vision. This is enabled from a two "species" classification of the interaction of opposing on-centre and off-centre neuron processes. We show that non-stationary stochastic resonances predicted by theory can occur with 1/f noise in the primary visual cortex V1 and suggest that signalling exchanges between V1 and the lateral geniculate nucleus (LGN) of the thalamus can initiate neural activity for saccadic action (and observer attention) for weak edge perception. Improvements predicted by our theory were shown from 600 observations by two groups of observers of limited experience and an experienced radiologist for reference (but not for diagnosis). They scanned and rated the definition of microcalcification in clusters separately rated by the experienced radiologist. The results and supporting theory showed dependence on the observer's attention and orderly scanning. Using a compact simplified equipment configuration the methodology has important clinical applications for conjunction searches of features and for detection of objects in poor light conditions for vehicles. Copyright © 2009 ACPSEM
Dynamic Programming Approach to Image Segmentation and its Application to Pre-processing of Mammograms
Images egmentationis an importent componento f imagop rocessings irce significantt ime can be savedi f a region of interest is extracted by al efficient segmentationa lgorithm. A dynamic programming image segmentation algorithnr is presented. The algorithm is applicable to images with a large matrix of gray levels of pixel values and generatesa path separatingt he object from the background.T he report of a.na pplication of the proposed algorithm to digitised mammotramsc omplementsit s description
Health and the Running Body: Notes from an Ethnography
This article aims to develop one of the major themes from an ethnographic study of the culture of distance running – the desire for health and fitness. Research was undertaken over a 2-year period using a variety of flexible qualitative data sources, most notably observation and in-depth interviews. The body, especially the ‘running body’, is seen by participants in this study as a source of health and well-being and affirmation of their identity. The results highlight the various contradictions and tensions that emerged whilst exploring the behaviour of distance runners in their desire to achieve a healthy body and mind
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al
The Genomic Signature of Crop-Wild Introgression in Maize
The evolutionary significance of hybridization and subsequent introgression
has long been appreciated, but evaluation of the genome-wide effects of these
phenomena has only recently become possible. Crop-wild study systems represent
ideal opportunities to examine evolution through hybridization. For example,
maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter,
mexicana) are known to hybridize in the fields of highland Mexico. Despite
widespread evidence of gene flow, maize and mexicana maintain distinct
morphologies and have done so in sympatry for thousands of years. Neither the
genomic extent nor the evolutionary importance of introgression between these
taxa is understood. In this study we assessed patterns of genome-wide
introgression based on 39,029 single nucleotide polymorphisms genotyped in 189
individuals from nine sympatric maize-mexicana populations and reference
allopatric populations. While portions of the maize and mexicana genomes were
particularly resistant to introgression (notably near known
cross-incompatibility and domestication loci), we detected widespread evidence
for introgression in both directions of gene flow. Through further
characterization of these regions and preliminary growth chamber experiments,
we found evidence suggestive of the incorporation of adaptive mexicana alleles
into maize during its expansion to the highlands of central Mexico. In
contrast, very little evidence was found for adaptive introgression from maize
to mexicana. The methods we have applied here can be replicated widely, and
such analyses have the potential to greatly informing our understanding of
evolution through introgressive hybridization. Crop species, due to their
exceptional genomic resources and frequent histories of spread into sympatry
with relatives, should be particularly influential in these studies
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
New evidence for habitat specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers
Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection
Ammonia-Nitrogen Recovery from Synthetic Solution using Agricultural Waste Fibers
In this study, modification of Empty Fruit Bunch (EFB) fibers as a means to recover ammonianitrogen from a synthetic solution was investigated. Methods: The EFB fiber was modified using sodium hydroxide.Adsorption-desorption studies of ammonia nitrogen into the modified EFB fiber were investigated Findings: Theincrease in adsorption capacity was found to be proportional with the increase of pH up to 7, temperature and ammoniaconcentration. The maximum adsorption capacity is 0.53-10.89 mg/g. The attachment of ammonia nitrogen involves ionexchange-chemisorption. The maximum desorption capacity of 0.0999 mg/g. Applications: This study can be used as abaseline for designing a low cost adsorbent system for ammonia nitrogen recovery drainage and industrial wastewater aswell as EFBs-palm oil mill effluent composting
Domestication history and geographical adaptation inferred from a SNP map of African rice
African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa-3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began-13,000-15,000 years ago with effective population size reaching its minimum value-3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within-300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species
Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior
Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1−/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1−/− mice as compared to wildtype Shank1+/+ littermate controls. Shank1−/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1−/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1−/− mice were unaffected, indicating a failure of Shank1−/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1−/− mice are consistent with a phenotype relevant to social communication deficits in autism.National Institute of Mental Health (U.S.) (Intramural Research Program)Simons Foundatio
- …
