805 research outputs found
Effect of Neutral Pulmonary Douche on Pulmonary Functions among Bronchial Asthma Patients
Introduction: Bronchial Asthma is the second-most significant contributing factor to mortality rates for chronic respiratory diseases. It is characterized by hyperreactivity of the airways and reversible episodes of bronchoconstriction. Douche is a general application in hydrotherapy, which is a stream of water directed against the body generally or locally. The neutral pulmonary douche (NPD) is employed to improve pulmonary functions, but there is no scientific report validating its effect. Materials and Method: A randomized control trial study of a total of 60 subjects belonging to the age group of 18–44 years participated in the study. The study participants were randomized into intervention and control groups (1:1). The intervention group (30) underwent NPD for 30 minutes. No intervention was given to the control group (30) and was followed up. The assessments were taken at baseline and after 10 days of the study. Result: The collected data was subjected to statistical analysis, employing interferential statistical tests. These analyses showed a significant difference in all parameters (FEV1, FVC, the FEV1FVC ratio, and PEFR) within (t-tests, the Wilcoxon rank test) and between (ANCOVA) groups. Conclusion: The implementation of hydrotherapy-facilitated NPD has demonstrated notable enhancement of pulmonary functionality in Bronchial asthma (BA) sufferers, in conjunction with conventional medical interventions. This discovery contributes to the progressively accumulating substantiation endorsing the efficacy of hydrotherapy within the domain of naturopathy
Aggressive cutaneous vasculitis in a patient with chronic lymphatic leukemia following granulocyte colony stimulating factor injection: a case report
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella
Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores
Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’
Withania somnifera extracts are known for their anti-cancerous, anti-inflammatory and antioxidative properties. One of their mechanisms of actions is to modulate mitochondrial function through increasing oxidative stress. Recently ‘priming’ has been suggested as a potential mechanism for enhancing cancer cell death. In this study we demonstrate that ‘priming’, in HT-29 colon cells, with W. somnifera root extract increased the potency of the chemotherapeutic agent cisplatin. We have also showed the W. somnifera root extract enhanced mitochondrial dysfunction and that the underlying mechanism of ‘priming’ was selectively through increased ROS. Moreover, we showed that this effect was not seen in non-cancerous cells
Genetic diversity of Mycobacterium tuberculosis isolates from central India
Background & objectives: There is a paucity of data available on genetic biodiversity of Mycobacterium tuberculosis isolates from central India. The present study was carried out on isolates of M. tuberculosis cultured from diagnostic clinical samples of patients from Bhopal, central India, using spoligotyping as a method of molecular typing.
Methods: DNA was extracted from 340 isolates of M. tuberculosis from culture, confirmed as M. tuberculosis by molecular and biochemical methods and subjected to spoligotyping. The results were compared with the international SITVIT2 database.
Results: Sixty five different spoligo international type (SIT) patterns were observed. A total of 239 (70.3%) isolates could be clustered into 25 SITs. The Central Asian (CAS) and East African Indian (EAI) families were found to be the two major circulating families in this region. SIT26/CAS1_DEL was identified as the most predominant type, followed by SIT11/EAI3_IND and SIT288/CAS[2]. Forty (11.8%) unique (non-clustered) and 61 (17.9%) orphan isolates were identified in the study. There was no significant association of clustering with clinical and demographic characteristics of patients.
Interpretation & conclusions: Well established SITs were found to be predominant in our study. SIT26/CAS1_DEL was the most predominant type. However, the occurrence of a substantial number of orphan isolates may indicate the presence of active spatial and temporal evolutionary dynamics within the isolates of M. tuberculosis
Cerebral Blood Volume Changes During Radiotherapy May Predict Pseudoprogression versus Disease Progression for Patients with High Grade Glioma
https://openworks.mdanderson.org/sumexp21/1040/thumbnail.jp
Non-compliance with a postmastectomy radiotherapy guideline: Decision tree and cause analysis
Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line
<p>Abstract</p> <p>Background</p> <p>Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS<sub>2</sub>) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS<sub>2</sub>concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS<sub>2</sub>.</p> <p>Methods</p> <p>Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS<sub>2 </sub>were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively.</p> <p>Results</p> <p>The cellular uptake as a function of extra-cellular AlPcS<sub>2 </sub>concentrations was observed to be biphasic. AlPcS<sub>2 </sub>was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G<sub>2</sub>+M phase was observed after PDT. The response of clonogenic survival after AlPcS<sub>2</sub>-PDT was non-monotonic with respect to AlPcS<sub>2 </sub>concentration.</p> <p>Conclusions</p> <p>Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects.</p
HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway
Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy
- …
