138 research outputs found

    Elevated Fibroblast growth factor 21 (FGF21) in obese, insulin resistant states is normalised by the synthetic retinoid Fenretinide in mice

    Get PDF
    The authors would like to thank undergraduate student Aleksandra Kowalczuk (University of Aberdeen) for assisting in experiments and Dr. Emma K. Lees (School of Health Sciences, Liverpool Hope University, Liverpool, UK) for invaluable discussions concerning the regulation of FGF21. We thank Dr. Calum Sutherland and Dr. Amy Cameron (both Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK) for technical support and expertise in performing hepatocyte studies. Fenretinide was a generous gift of T. Martin (Johnson & Johnson, New Brunswick, NJ) and U. Thumeer (Cilag AG, Schaffhausen, Switzerland), for use completely without restriction or obligation. Quantitative-PCR was carried out using the qPCR Core Facility (Institute of Medical Sciences, University of Aberdeen). RNA-sequencing was carried out at the University of Aberdeen Centre for Genome Enabled Biology and Medicine. Pancreas histology was performed by Dr Linda Davidson (Department of Histology, Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Health Campus, Aberdeen, UK). This study was supported by the British Heart Foundation Intermediate Basic Research Fellowship FS/09/026 to N. Mody, RCUK fellowship to MD, EFSD/Lilly Programme Grant to MD and N. Mody, Tenovus Scotland grants G10/04 and G14/14 to N. Mody, University of Aberdeen Centre for Genome Enabled Biology and Medicine (CGEBM) PhD studentship to N. Morrice and Biotechnology and Biological Sciences Research Council studentship to GDM.Peer reviewedPublisher PD

    Co-morbid depression is associated with poor work outcomes in persons with cardiovascular disease (CVD): A large, nationally representative survey in the Australian population

    Get PDF
    Background: Co-morbid major depressive disorder (MDD) and cardiovascular disease (CVD) is associated with poor clinical and psychological outcomes. However, the full extent of the burden of, and interaction between, this co-morbidity on important vocational outcomes remains less clear, particularly at the population level. We examine the association of co-morbid MDD with work outcomes in persons with and without CVD.Methods. This study utilised cross-sectional, population-based data from the 2007 Australian National Survey of Mental Health and Wellbeing (n = 8841) to compare work outcomes of individuals with diagnostically-defined MDD and CVD, MDD but not CVD, CVD but not MDD, with a reference group of "healthy" Australians. Workforce participation was defined as being in full- or part-time employment. Work functioning was measured using a WHO Disability Assessment Schedule item. Absenteeism was assessed using the \u27days out of role\u27 item.Results: Of the four groups, those with co-morbid MDD and CVD were least likely to report workforce participation (adj OR:0.4, 95% CI: 0.3-0.6). Those with MDD only (adj OR:0.8, 95% CI:0.7-0.9) and CVD only (adj OR:0.8, 95% CI: 0.6-0.9) also reported significantly reduced odds of participation. Employed individuals with co-morbid MDD and CVD were 8 times as likely to experience impairments in work functioning (adj OR:8.1, 95% CI: 3.8- 17.3) compared with the reference group. MDD was associated with a four-fold increase in impaired functioning. Further, individuals with co-morbid MDD and CVD reported greatest likelihood of workplace absenteeism (adj. OR:3.0, 95% CI: 1.4-6.6). Simultaneous exposure to MDD and CVD conferred an even greater likelihood of poorer work functioning.Conclusions: Co-morbid MDD and CVD is associated with significantly poorer work outcomes. Specifically, the effects of these conditions on work functioning are synergistic. The development of specialised treatment programs for those with co-morbid MDD and CVD is required

    The growth pattern of transplanted normal and nodular hepatocytes

    Get PDF
    Overt neoplasia is often the end result of a long biological process beginning with the appearance of focal lesions of altered tissue morphology. While the putative clonal nature of focal lesions has often been emphasized, increasing attention is being devoted to the possible role of an altered growth pattern in the evolution of carcinogenesis. Here we compare the growth patterns of normal and nodular hepatocytes in a transplantation system that allows their selective clonal proliferation in vivo. Rats were pre-treated with retrorsine, which blocks the growth of resident hepatocytes, and were then transplanted with hepatocytes isolated from either normal liver or hepatocyte nodules. Both cell types were able to proliferate extensively in the recipient liver, as expected. However, their growth pattern was remarkably different. Clusters of normal hepatocytes integrated in the host liver, displaying a normal histology; however, transplanted nodular hepatocytes formed new hepatocyte nodules, with altered morphology and sharp demarcation from surrounding host liver. Both the expression and distribution of proteins involved in cell polarity, cell communication, and cell adhesion, including connexin 32, E-cadherin, and matrix metalloproteinase-2, were altered in clusters of nodular hepatocytes. Furthermore, we were able to show that down-regulation of connexin 32 and E-cadherin in nodular hepatocyte clusters was independent of growth rate. These results support the concept that a dominant pathway towards neoplastic disease in several organs involves defect(s) in tissue pattern formation

    Teaching digital fiction: integrating experimental writing and current technologies

    Get PDF
    Today’s creative writers are immersed in a multiplicative, multimodal—digital—universe. It requires “multiliteracies”, all in a constantly and rapidly evolving technological environment, which are not yet fundamentally integrated into the basic literacy skills entrenched in school learning. How can creative writing instructors in higher education best prepare their students for the real-world contexts of their creative practice? One approach is to integrate the creative writing workshop with a focus on digital and interactive design. This paper outlines a module incorporating multiple literacies into a creative writing course, Playable Fiction, noting the affordances, limitations, and benefits of teaching workshops for writing digital fiction (“born-digital” fiction, composed for and read on digital devices). The researcher took an ethnographical approach to the question, designing a module to encourage creative writing students to experiment with digital fiction, and observing the effects on the students’ attitudes and their coursework. Included is a discussion of the benefits to students of developing multiliteracies and considerations for teaching, including issues of technical know-how and the lack of infrastructural support

    Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice

    Full text link
    As populations increase their life expectancy, age-related neurodegenerative disorders such as Alzheimer's disease have become more common. I2-Imidazoline receptors (I2-IR) are widely distributed in the central nervous system, and dysregulation of I2-IR in patients with neurodegenerative diseases has been reported, suggesting their implication in cognitive impairment. This evidence indicates that high-affinity selective I2-IR ligands potentially contribute to the delay of neurodegeneration. In vivo studies in the female senescence accelerated mouse-prone 8 mice have shown that treatment with I2-IR ligands, MCR5 and MCR9, produce beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Furthermore, treatments with these I2-IR ligands diminished the amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I2-IR ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related neurodegenerative diseases. Keywords Imidazoline I2 receptors (2-imidazolin-4-yl)phosphonates Behavior Cognition Neurodegeneration Neuroprotection Agin

    Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas

    Get PDF
    Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations.The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials.To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected. Molecularly stratified treatment options are limited, and targeted therapies are still in preclinical development. Attacking these aggressive tumors at multiple frontiers will be needed to improve stagnant survival rates

    Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change

    Get PDF
    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO2 availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO2 and temperature are leading to increased CO2 and HCO3- and decreased CO32- and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO2 affinity, while increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron availability increases CO2 affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions among the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity
    corecore