12 research outputs found

    Modular assembly of proteins on nanoparticles

    Get PDF
    Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum, for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes, which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond

    Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking

    No full text
    In discriminative tracking, lots of tracking methods easily suffer from changes of pose, illumination and occlusion. To deal with this problem, we propose a novel object tracking method using structural sparse representation-based semi-supervised learning and edge detection. First, the object appearance model is constructed by extracting sparse code features on different layers to exploit local information and holistic information. To utilize unlabelled samples information, the semi-supervised learning is introduced and a classifier is trained which is used to measure candidates. In addition, an auxiliary positive sample set is maintained to improve the performance of the classifier. We subsequently adopt an edge detection to alleviate the error accumulation based on the ranking results from the learned classifier. Finally, the proposed method is implemented under the Bayesian inference framework. Both the proposed tracker and several current trackers are tested on some challenging videos, where the target objects undergo pose change, illumination and occlusion. The experimental results demonstrate that the proposed tracker outperforms the other state-of-the-art methods in terms of effectiveness and robustness

    Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies

    No full text
    corecore