381 research outputs found

    Research at the Institute of electrotechnology in the field of induction heating

    Full text link
    The paper informs generally about the activities at the Institute of Electrotechnology in Hannover, Germany in the fields of education and research in Electrotechnology. Several actual research projects are described in detail in the field of induction heating. A second paper written by Baake and Spitans gives an overview about the activities at the institute in induction melting

    Research activities at the Institute of electrotechnology in the field of metallurgical melting processes

    Full text link
    A wide range of industrial metallurgical melting processes are carried out using electrothermal and electromagnetic technologies. The application of electrotechnologies offers many advantages from technological, ecological and economical point of view. Although the technology level of the electromagnetic melting installations and processes used in the industry today is very high, there are still potentials for improvement and optimization. In this paper recent applications and future development trends for efficient use of electromagnetic processing technologies in metallurgical melting processes are described along selected examples which are part of the research activities of the Institute of Electrotechnology of the Leibniz University of Hannover

    Single-crossover dynamics: finite versus infinite populations

    Full text link
    Populations evolving under the joint influence of recombination and resampling (traditionally known as genetic drift) are investigated. First, we summarise and adapt a deterministic approach, as valid for infinite populations, which assumes continuous time and single crossover events. The corresponding nonlinear system of differential equations permits a closed solution, both in terms of the type frequencies and via linkage disequilibria of all orders. To include stochastic effects, we then consider the corresponding finite-population model, the Moran model with single crossovers, and examine it both analytically and by means of simulations. Particular emphasis is on the connection with the deterministic solution. If there is only recombination and every pair of recombined offspring replaces their pair of parents (i.e., there is no resampling), then the {\em expected} type frequencies in the finite population, of arbitrary size, equal the type frequencies in the infinite population. If resampling is included, the stochastic process converges, in the infinite-population limit, to the deterministic dynamics, which turns out to be a good approximation already for populations of moderate size.Comment: 21 pages, 4 figure

    Random fields on model sets with localized dependency and their diffraction

    Full text link
    For a random field on a general discrete set, we introduce a condition that the range of the correlation from each site is within a predefined compact set D. For such a random field omega defined on the model set Lambda that satisfies a natural geometric condition, we develop a method to calculate the diffraction measure of the random field. The method partitions the random field into a finite number of random fields, each being independent and admitting the law of large numbers. The diffraction measure of omega consists almost surely of a pure-point component and an absolutely continuous component. The former is the diffraction measure of the expectation E[omega], while the inverse Fourier transform of the absolutely continuous component of omega turns out to be a weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point component will be understood quantitatively in a simple exact formula if the weights are continuous over the internal space of Lambda Then we provide a sufficient condition that the diffraction measure of a random field on a model set is still pure-point.Comment: 21 page

    Diffractive point sets with entropy

    Full text link
    After a brief historical survey, the paper introduces the notion of entropic model sets (cut and project sets), and, more generally, the notion of diffractive point sets with entropy. Such sets may be thought of as generalizations of lattice gases. We show that taking the site occupation of a model set stochastically results, with probabilistic certainty, in well-defined diffractive properties augmented by a constant diffuse background. We discuss both the case of independent, but identically distributed (i.i.d.) random variables and that of independent, but different (i.e., site dependent) random variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th birthday; final version, some minor addition

    Multiple planar coincidences with N-fold symmetry

    Get PDF
    Planar coincidence site lattices and modules with N-fold symmetry are well understood in a formulation based on cyclotomic fields, in particular for the class number one case, where they appear as certain principal ideals in the corresponding ring of integers. We extend this approach to multiple coincidences, which apply to triple or multiple junctions. In particular, we give explicit results for spectral, combinatorial and asymptotic properties in terms of Dirichlet series generating functions.Comment: 13 pages, two figures. For previous related work see math.MG/0511147 and math.CO/0301021. Minor changes and references update

    Aperiodic Ising Quantum Chains

    Full text link
    Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck's criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck's conjectures for this case are confirmed and refined. Among other outcomes, we give an exact formula for the correlation length critical exponent for arbitrary two-letter substitution sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and amssymb.sty (one error corrected, some minor changes

    Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory

    Full text link
    We express the Crow-Kimura and Eigen models of quasispecies theory in a functional integral representation. We formulate the spin coherent state functional integrals using the Schwinger Boson method. In this formulation, we are able to deduce the long-time behavior of these models for arbitrary replication and degradation functions. We discuss the phase transitions that occur in these models as a function of mutation rate. We derive for these models the leading order corrections to the infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy

    Noncommutative Geometry from D0-branes in a Background B-field

    Full text link
    We study D0-branes in type IIA on T2T^2 with a background B-field turned on. We calculate explicitly how the background B-field modifies the D0-brane action. The effect of the B-field is to replace ordinary multiplication with a noncommutative product. This enables us to find the matrix model for M-theory on T2T^2 with a background 3-form potential along the torus and the lightlike circle. This matrix model is exactly the non-local 2+1 dim SYM theory on a dual T2T^2 proposed by Connes, Douglas and Schwarz. We calculate the radii and the gauge coupling for the SYM on the dual T2T^2 for all choices of longitudinal momentum and membrane wrapping number on the T2T^2.Comment: 13pp, harvmac with five eps figures; final version in Nuclear Physics

    Mutation, selection, and ancestry in branching models: a variational approach

    Full text link
    We consider the evolution of populations under the joint action of mutation and differential reproduction, or selection. The population is modelled as a finite-type Markov branching process in continuous time, and the associated genealogical tree is viewed both in the forward and the backward direction of time. The stationary type distribution of the reversed process, the so-called ancestral distribution, turns out as a key for the study of mutation-selection balance. This balance can be expressed in the form of a variational principle that quantifies the respective roles of reproduction and mutation for any possible type distribution. It shows that the mean growth rate of the population results from a competition for a maximal long-term growth rate, as given by the difference between the current mean reproduction rate, and an asymptotic decay rate related to the mutation process; this tradeoff is won by the ancestral distribution. Our main application is the quasispecies model of sequence evolution with mutation coupled to reproduction but independent across sites, and a fitness function that is invariant under permutation of sites. Here, the variational principle is worked out in detail and yields a simple, explicit result.Comment: 45 pages,8 figure
    corecore