1,720 research outputs found
Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences
Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3–2.4 % while the overall nucleotide variation among all 11 haplotypes was 4.6 %. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2–2.5 % and the overall nucleotide variation was determined as 5.8 % among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene. © 2015, Springer-Verlag Berlin Heidelberg
Isolation, spectroscopic characterization, X-ray, theoretical studies as well as in vitro cytotoxicity of Samarcandin
Samarcandin 1, a natural sesquiterpene-coumarin, was isolated as well as elucidated from F. assa-foetida which has significant effect in Iranian traditional medicine because of its medicinal attitudes. The crystal structure of samarcandin was determined by single-crystal X-ray structure analysis. It is orthorhombic, with unit cell parameters a = 10.8204 (5) Å, b = 12.9894 (7) Å, c = 15.2467 (9) Å, V = 2142.9 (2) Å3, space group P212121 and four symmetry equivalent molecules in the unit cell. Samarcandin was isolated in order to study for its theoretical studies as well as its cellular toxicity as anti-cancer drug against two cancerous cells. In comparison with controls, our microscopic and MTT assay data showed that samarcandin suppresses cancer cell proliferation in a dose-dependent manner with IC50 = 11 μM and 13 for AGS and WEHI-164 cell lines, respectively. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) of the structure was computed by three functional methods and 6-311++G∗∗ standard basis set. The optimized molecular geometry and theoretical analysis agree closely to that obtained from the single crystal X-ray crystallography. To sum up, the good correlations between experimental and theoretical studies by UV, NMR, and IR spectra were found. © 2016 Elsevier Inc. All rights reserved
CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, noncanonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wildtype NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell typespecific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.Published versio
Modulation of the hepatocyte rough endoplasmic reticulum single chloride channel by nucleotide-Mg 2+ interaction
The effect of nucleotides on single chloride channels derived from rat hepatocyte rough endoplasmic reticulum vesicles incorporated into bilayer lipid membrane was investigated. The single chloride channel currents were measured in 200/50 mmol/l KCl cis/trans solutions. Adding 2.5 mM adenosine triphosphate (ATP) and adenosine diphosphate (ADP) did not influence channel activity. However, MgATP addition inhibited the chloride channels by decreasing the channel open probability (Po) and current amplitude, whereas mixture of Mg 2+ and ADP activated the chloride channel by increasing the Po and unitary current amplitude. According to the results, there is a novel regulation mechanism for rough endoplasmic reticulum (RER) Cl - channel activity by intracellular MgATP and mixture of Mg 2+ and ADP that would result in significant inhibition by MgATP and activation by mixture of Mg 2+ and ADP. These modulatory effects of nucleotide-Mg 2+ complexes on chloride channels may be dependent on their chemical structure configuration. It seems that Mg-nucleotide-ion channel interactions are involved to produce a regulatory response for RER chloride channels. © Springer-Verlag 2012
- …
