5,736 research outputs found
Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors
Non-classical response to rotation is a hallmark of quantum ordered states
such as superconductors and superfluids. The rotational responses of all
currently known single-component "super" states of matter (superconductors,
superfluids and supersolids) are largely described by two fundamental
principles and fall into two categories according to whether the systems are
composed of charged or neutral particles: the London law relating the angular
velocity to a subsequently established magnetic field and the Onsager-Feynman
quantization of superfluid velocity. These laws are theoretically shown to be
violated in a two-component superconductor such as the projected liquid
metallic states of hydrogen and deuterium at high pressures. The rotational
responses of liquid metallic hydrogen or deuterium identify them as a new class
of dissipationless states; they also directly point to a particular
experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The
final version will be posted 6 months after its publication Nature Physics,
according to the journal polic
Skyrmionic state and stable half-quantum vortices in chiral p-wave superconductors
Observability of half-quantum vortices and skyrmions in p-wave
superconductors is an outstanding open question. Under the most common
conditions, fractional flux vortices are not thermodynamically stable in bulk
samples. Here we show that in chiral p-wave superconductors, there is a regime
where, in contrast lattices of integer flux vortices are not thermodynamically
stable. Instead skyrmions made of spatially separated half-quantum vortices are
the topological defects produced by an applied external field.Comment: Replaced with a version in print in Physical Review B, Rapid
Communications; References added; 8 pages, 9 figure
Nonlinear sigma model approach for phase disorder transitions and the pseudogap phase in chiral Gross-Neveu, Nambu-Jona-Lasinio models and strong-coupling superconductors
We briefly review the nonlinear sigma model approach for the subject of
increasing interest: "two-step" phase transitions in the Gross-Neveu and the
modified Nambu-Jona-Lasinio models at low and condensation from pseudogap
phase in strong-coupling superconductors. Recent success in describing
"Bose-type" superconductors that possess two characterstic temperatures and a
pseudogap above is the development approximately comparable with the BCS
theory. One can expect that it should have influence on high-energy physics,
similar to impact of the BCS theory on this subject. Although first
generalizations of this concept to particle physics were made recently, these
results were not systematized. In this review we summarize this development and
discuss similarities and differences of the appearence of the pseudogap phase
in superconductors and the Gross-Neveu and Nambu-Jona-Lasinio - like models. We
discuss its possible relevance for chiral phase transition in QCD and color
superconductors. This paper is organized in three parts: in the first section
we briefly review the separation of temperatures of pair formation and pair
condensation in strong - coupling and low carrier density superconductors (i.e.
the formation of the {\it pseudogap phase}).
Second part is a review of nonlinear sigma model approach to an analogous
phenomenon in the Chiral Gross-Neveu model at small N. In the third section we
discuss the modified Nambu-Jona-Lasinio model where the chiral phase transition
is accompanied by a formation of a phase analogous to the pseudogap phase.Comment: A brief review. Replaced with journal version (some grammatical
corrections). The latest updates of this and related papers are also
available at the author home page http://www.teorfys.uu.se/PEOPLE/egor
Dual neutral variables and knot solitons in triplet superconductors
In this paper we derive a dual presentation of free energy functional for
spin-triplet superconductors in terms of gauge-invariant variables. The
resulting equivalent model in ferromagnetic phase has a form of a version of
the Faddeev model. This allows one in particular to conclude that spin-triplet
superconductors allow formation of stable finite-length closed vortices (the
knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the
effect of the coupling of the fields {\vec s} and {\vec C} on knot
stability). Latest updates of the paper and miscellaneous links related to
knotted solitons are also available at the homepage of the author
http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by
Hietarinta and Salo are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
A superconductor to superfluid phase transition in liquid metallic hydrogen
Although hydrogen is the simplest of atoms, it does not form the simplest of
solids or liquids. Quantum effects in these phases are considerable (a
consequence of the light proton mass) and they have a demonstrable and often
puzzling influence on many physical properties, including spatial order. To
date, the structure of dense hydrogen remains experimentally elusive. Recent
studies of the melting curve of hydrogen indicate that at high (but
experimentally accessible) pressures, compressed hydrogen will adopt a liquid
state, even at low temperatures. In reaching this phase, hydrogen is also
projected to pass through an insulator-to-metal transition. This raises the
possibility of new state of matter: a near ground-state liquid metal, and its
ordered states in the quantum domain. Ordered quantum fluids are traditionally
categorized as superconductors or superfluids; these respective systems feature
dissipationless electrical currents or mass flow. Here we report an analysis
based on topological arguments of the projected phase of liquid metallic
hydrogen, finding that it may represent a new type of ordered quantum fluid.
Specifically, we show that liquid metallic hydrogen cannot be categorized
exclusively as a superconductor or superfluid. We predict that, in the presence
of a magnetic field, liquid metallic hydrogen will exhibit several phase
transitions to ordered states, ranging from superconductors to superfluids.Comment: for a related paper see cond-mat/0410425. A correction to the front
page caption appeared in Oct 14 issue of Nature:
http://www.nature.com/nature/links/041014/041014-11.htm
Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent systems
Traditionally, superconductors are categorized as type-I or type-II. Type-I
superconductors support only Meissner and normal states, while type-II
superconductors form magnetic vortices in sufficiently strong applied magnetic
fields. Recently there has been much interest in superconducting systems with
several species of condensates, in fields ranging from Condensed Matter to High
Energy Physics. Here we show that the type-I/type-II classification is
insufficient for such multicomponent superconductors. We obtain solutions
representing thermodynamically stable vortices with properties falling outside
the usual type-I/type-II dichotomy, in that they have the following features:
(i) Pippard electrodynamics, (ii) interaction potential with long-range
attractive and short-range repulsive parts, (iii) for an n-quantum vortex, a
non-monotonic ratio E(n)/n where E(n) is the energy per unit length, (iv)
energetic preference for non-axisymmetric vortex states, "vortex molecules".
Consequently, these superconductors exhibit an emerging first order transition
into a "semi-Meissner" state, an inhomogeneous state comprising a mixture of
domains of two-component Meissner state and vortex clusters.Comment: in print in Phys. Rev. B Rapid Communications. v2: presentation is
made more accessible for a general reader. Latest updates and links to
related papers are available at the home page of one of the authors:
http://people.ccmr.cornell.edu/~egor
Vortex matter and generalizations of dipolar superfluidity concept in layered systems
In the first part of this letter we discuss electrodynamics of an excitonic
condensate in a bilayer. We show that under certain conditions the system has a
dominant energy scale and is described by the effective electrodynamics with
"planar magnetic charges". In the second part of the paper we point out that a
vortex liquid state in bilayer superconductors also possesses dipolar
superfluid modes and establish equivalence mapping between this state and a
dipolar excitonic condensate. We point out that a vortex liquid state in an
N-layer superconductor possesses multiple topologically coupled dipolar
superfluid modes and therefore represents a generalization of the dipolar
superfluidity concept.Comment: v2: references added. v3: discussion extended, references adde
- …
