469 research outputs found

    Potential biomedical applications of ion beam technology

    Get PDF
    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants

    Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources

    Full text link
    Proposals for near-term experiments in quantum chemistry on quantum computers leverage the ability to target a subset of degrees of freedom containing the essential quantum behavior, sometimes called the active space. This approximation allows one to treat more difficult problems using fewer qubits and lower gate depths than would otherwise be possible. However, while this approximation captures many important qualitative features, it may leave the results wanting in terms of absolute accuracy (basis error) of the representation. In traditional approaches, increasing this accuracy requires increasing the number of qubits and an appropriate increase in circuit depth as well. Here we introduce a technique requiring no additional qubits or circuit depth that is able to remove much of this approximation in favor of additional measurements. The technique is constructed and analyzed theoretically, and some numerical proof of concept calculations are shown. As an example, we show how to achieve the accuracy of a 20 qubit representation using only 4 qubits and a modest number of additional measurements for a simple hydrogen molecule. We close with an outlook on the impact this technique may have on both near-term and fault-tolerant quantum simulations

    Resource Efficient Gadgets for Compiling Adiabatic Quantum Optimization Problems

    Get PDF
    A resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a inline image-local, optimization Hamiltonian is developed. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. First, methods of applying these gadgets to obtain 2-local Hamiltonians using the least possible number of ancilla qubits are optimized. Next, a novel reduction gadget which minimizes control precision and a heuristic which uses this gadget to compile 3-local problems with a significant reduction in control precision are shown. Finally, numerics are presented which indicate a substantial decrease in the resources required to implement randomly generated, 3-body optimization Hamiltonians when compared to other methods in the literature.Chemistry and Chemical Biolog

    What is the Computational Value of Finite Range Tunneling?

    Full text link
    Quantum annealing (QA) has been proposed as a quantum enhanced optimization heuristic exploiting tunneling. Here, we demonstrate how finite range tunneling can provide considerable computational advantage. For a crafted problem designed to have tall and narrow energy barriers separating local minima, the D-Wave 2X quantum annealer achieves significant runtime advantages relative to Simulated Annealing (SA). For instances with 945 variables, this results in a time-to-99%-success-probability that is 108\sim 10^8 times faster than SA running on a single processor core. We also compared physical QA with Quantum Monte Carlo (QMC), an algorithm that emulates quantum tunneling on classical processors. We observe a substantial constant overhead against physical QA: D-Wave 2X again runs up to 108\sim 10^8 times faster than an optimized implementation of QMC on a single core. We note that there exist heuristic classical algorithms that can solve most instances of Chimera structured problems in a timescale comparable to the D-Wave 2X. However, we believe that such solvers will become ineffective for the next generation of annealers currently being designed. To investigate whether finite range tunneling will also confer an advantage for problems of practical interest, we conduct numerical studies on binary optimization problems that cannot yet be represented on quantum hardware. For random instances of the number partitioning problem, we find numerically that QMC, as well as other algorithms designed to simulate QA, scale better than SA. We discuss the implications of these findings for the design of next generation quantum annealers.Comment: 17 pages, 13 figures. Edited for clarity, in part in response to comments. Added link to benchmark instance
    corecore