116 research outputs found

    Response of a marine-terminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago

    Get PDF
    Long-term records of Greenland outlet-glacier change extending beyond the satellite era can inform future predictions of Greenland Ice Sheet behavior. Of particular relevance is elucidating the Greenland Ice Sheet's response to decadal- and centennial-scale climate change. Here, we reconstruct the early Holocene history of Jakobshavn Isbræ, Greenland's largest outlet glacier, using 10Be surface exposure ages and 14C-dated lake sediments. Our chronology of ice-margin change demonstrates that Jakobshavn Isbræ advanced to deposit moraines in response to abrupt cooling recorded in central Greenland ice cores ca. 8,200 and 9,300 years ago. While the rapid, dynamically aided retreat of many Greenland outlet glaciers in response to warming is well documented, these results indicate that marine-terminating outlet glaciers are also able to respond quickly to cooling. We suggest that short lag times of high ice flux margins enable a greater magnitude response of marine-terminating outlets to abrupt climate change compared to their land-terminating counterparts

    Recurring dynamically-induced thinning during 1985-2010 on Upernavik Isstrøm, West Greenland

    Get PDF
    This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".1] Many glaciers along the southeast and northwest coasts of Greenland have accelerated, increasing the ice sheet's contribution to global sea-level rise. In this article, we map elevation changes on Upernavik Isstrøm (UI), West Greenland, during 2003to 2009 using high-resolution ice, cloud and land elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010 characterized by a rapid retreat of the calving front, increased ice speed, and lowering of the ice surface. The first period occurred before 1991, whereas the latter occurred during 2005 to 2009. Analyses of air and sea-surface temperature suggest a combination of relatively warm air and ocean water as a potential trigger for the dynamically induced ice loss. We estimate a total catchment-wide ice-mass loss of UI caused by the two events of 72.3 ± 15.8 Gt during 1985 to 2010, whereas the total melt-induced ice-mass loss during this same period is 19.8 ± 2.8 Gt. Thus, 79% of the total ice-mass loss of the UI catchment was caused by ice dynamics, indicating the importance of including dynamically induced ice loss in the total mass change budget of the Greenland ice sheet

    Bodily Complexity:Integrated Multicellular Organizations for Contraction-Based Motility

    Get PDF
    Compared to other forms of multicellularity, the animal case is unique. Animals—barring some exceptions—consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration is so well known that it is often taken as a natural one that ‘must’ have evolved, given environmental conditions that make large free-moving units ‘obviously’ adaptive. Here we question the seemingly evolutionary inevitableness of animals and introduce a thesis of bodily complexity: The multicellular organization characteristic for typical animals requires the integration of a multitude of intrinsic bodily features between its sensorimotor, physiological, and developmental aspects, and the related contraction-based tissue- and cellular-level events and processes. The evolutionary road toward this bodily complexity involves, we argue, various intermediate organizational steps that accompany and support the wider transition from cilia-based to contraction/muscle-based motility, and which remain insufficiently acknowledged. Here, we stress the crucial and specific role played by muscle-based and myoepithelial tissue contraction—acting as a physical platform for organizing both the multicellular transmission of mechanical forces and multicellular signaling—as key foundation of animal motility, sensing and maintenance, and development. We illustrate and discuss these bodily features in the context of the four basal animal phyla—Porifera, Ctenophores, Placozoans, and Cnidarians—that split off before the bilaterians, a supergroup that incorporates all complex animals

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    Get PDF
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate

    Perspectives on the Convergent Evolution of Tetrapod Salt Glands

    Full text link
    International audienceSince their discovery in 1958, the function of specialized salt-secreting glands in tetrapods has been studied in great detail, and such studies continue to contribute to a general understanding of transport mechanisms of epithelial water and ions. Interestingly, during that same time period, there have been only few attempts to understand the convergent evolution of this tissue, likely as a result of the paucity of taxonomic, embryological, and molecular data available. In this review, we synthesize the available data regarding the distribution of salt glands across extant and extinct tetrapod lineages and the anatomical position of the salt gland in each taxon. Further, we use these data to develop hypotheses about the various factors that have influenced the convergent evolution of salt glands across taxa with special focus on the variation in the anatomical position of the glands and on the molecular mechanisms that may have facilitated the development of a salt gland by co-option of a nonsalt-secreting ancestral gland. It is our hope that this review will stimulate renewed interest in the topic of the convergent evolution of salt glands and inspire future empirical studies aimed at evaluating the hypotheses we lay out herein

    PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis

    No full text
    Abstract Background Pax genes are a family of conserved transcription factors that regulate many aspects of developmental morphogenesis, notably the development of ectodermal sensory structures including eyes. Nematostella vectensis, the starlet sea anemone, has numerous Pax orthologs, many of which are expressed early during embryogenesis. The function of Pax genes in this eyeless cnidarian is unknown. Results Here, we show that PaxA, but not PaxC, plays a critical role in the development of cnidocytes in N. vectensis. Knockdown of PaxA results in a loss of developing cnidocytes and downregulation of numerous cnidocyte-specific genes, including a variant of the transcription factor Mef2. We also demonstrate that the co-expression of Mef2 in a subset of the PaxA-expressing cells is associated with the development with a second lineage of cnidocytes and show that knockdown of the neural progenitor gene SoxB2 results in downregulation of expression of PaxA, Mef2, and several cnidocyte-specific genes. Because PaxA is not co-expressed with SoxB2 at any time during cnidocyte development, we propose a simple model for cnidogenesis whereby a SoxB2-expressing progenitor cell population undergoes division to give rise to PaxA-expressing cnidocytes, some of which also express Mef2. Discussion The role of PaxA in cnidocyte development among hydrozoans has not been studied, but the conserved role of SoxB2 in regulating the fate of a progenitor cell that gives rise to neurons and cnidocytes in Nematostella and Hydractinia echinata suggests that this SoxB2/PaxA pathway may well be conserved across cnidarians

    Impedance Tympanometry and Acoustic Reflectometry at Myringotomy

    Full text link
    A total of 220 ears undergoing myringotomy and pressure-equalizing tube placement were studied with impedance tympanometry and acoustic reflectometry in a direct comparison for detection of middle-ear effusion. Impedance tympanometry and acoustic reflectometry were equally accurate, detecting the presence or absence of middle-ear effusion in 73% and 72% of ears, respectively. The presence of effusion in ears with tympanographic patterns other than type A and type B was not consistently and reliably predicted. The higher sensitivity of impedance tympanometry (90%) compared with that for acoustic reflectometry (58%) contrasted with the opposite findings for specificities (54% vs 88%). It is concluded that impedance tympanometry and acoustic reflectometry measure different events at the tympanic membrane and their utility lies in the fact that they complement each other. These instruments can aid the experienced otoscopist in confirming a clinical impression and assist the less experienced clinician in validating or improving otoscopic skills.</jats:p
    corecore