5 research outputs found

    Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations

    Get PDF
    This paper presents a multiscale Petrov-Galerkin finite element method for time-harmonic acoustic scattering problems with heterogeneous coefficients in the high-frequency regime. We show that the method is pollution free also in the case of heterogeneous media provided that the stability bound of the continuous problem grows at most polynomially with the wave number k. By generalizing classical estimates of Melenk (Ph.D. Thesis 1995) and Hetmaniuk (Commun. Math. Sci. 5, 2007) for homogeneous medium, we show that this assumption of polynomially wave number growth holds true for a particular class of smooth heterogeneous material coefficients. Further, we present numerical examples to verify our stability estimates and implement an example in the wider class of discontinuous coefficients to show computational applicability beyond our limited class of coefficients

    Achievements and Challenges in Sedimentary Basin Dynamics: A Review

    No full text

    Error estimates and adaptive finite element methods

    No full text
    corecore