110 research outputs found
The Need, Benefits, and Demonstration of a Minimization Principle for Excited States
It is shown that the standard methods of computing excited states in
truncated spaces must yield wave functions that, beyond truncation, are in
principle veered away from the exact, and a remedy is demonstrated via a
presented functional, F, obeying a minimization principle for excited
states. It is further demonstrated that near avoided crossings, between two
MCSCF 'flipped roots' the wave function that leads to the excited state has the
lowest F.Comment: 4 pages, 1 figure, International Conference of Computational Methods
in Sciences and Engineering - 2015 / Computational Chemistry, 20-23 March
2015, Athens, GREEC
Computing Correct Truncated Excited State Wavefunctions
We demonstrate that, if a truncated expansion of a wave function is small,
then the standard excited states computational method, of optimizing one root
of a secular equation, may lead to an incorrect wave function - despite the
correct energy according to the theorem of Hylleraas, Undheim and McDonald -
whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)]
(independent of orthogonality to lower lying approximants) leads to correct
reliable small truncated wave functions. The demonstration is done in He
excited states, using truncated series expansions in Hylleraas coordinates, as
well as standard configuration-interaction truncated expansions.Comment: 4 pages, 1 figure, 2 tables, ICCMSE2016: International Conference of
Computational Methods in Science and Engineerin
Variational Functionals for Excited States
Functionals that have local minima at the excited states of a non degenerate
Hamiltonian are presented. Then, improved mutually orthogonal approximants of
the ground and the first excited state are reported.Comment: 4 page
Topological and topological-electronic correlations in amorphous silicon
In this paper, we study several structural models of amorphous silicon, and
discuss structural and electronic features common to all. We note spatial
correlations between short bonds, and similar correlations between long bonds.
Such effects persist under a first principles relaxation of the system and at
finite temperature. Next we explore the nature of the band tail states and find
the states to possess a filamentary structure. We detail correlations between
local geometry and the band tails.Comment: 7 pages, 11 figures, submitted to Journal of Crystalline Solid
Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures
Topological insulators are characterized by a nontrivial band topology driven
by the spin-orbit coupling. To fully explore the fundamental science and
application of topological insulators, material realization is indispensable.
Here we predict, based on tight-binding modeling and first-principles
calculations, that bilayers of perovskite-type transition-metal oxides grown
along the [111] crystallographic axis are potential candidates for
two-dimensional topological insulators. The topological band structure of these
materials can be fine-tuned by changing dopant ions, substrates, and external
gate voltages. We predict that LaAuO bilayers have a
topologically-nontrivial energy gap of about 0.15 eV, which is sufficiently
large to realize the quantum spin-Hall effect at room temperature. Intriguing
phenomena, such as fractional quantum Hall effect, associated with the
nearly-flat topologically-nontrivial bands found in systems are also
discussed.Comment: Main text 11 pages with 4 figures and 1 table. Supplementary
materials 4 pages with 2 figure
Neutral ‘‘parent’’ states of the ionic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi mathvariant="normal">−</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Φ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">g</mml:mi></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>
Lowest<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">u</mml:mi></mml:mrow><mml:mrow /><mml:mrow /><mml:mrow /><mml:mprescripts /><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow /><mml:mrow /></mml:mmultiscripts></mml:mrow></mml:math>state of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>
- …
