2,868 research outputs found

    Poisson Hail on a Hot Ground

    Full text link
    We consider a queue where the server is the Euclidean space, and the customers are random closed sets (RACS) of the Euclidean space. These RACS arrive according to a Poisson rain and each of them has a random service time (in the case of hail falling on the Euclidean plane, this is the height of the hailstone, whereas the RACS is its footprint). The Euclidean space serves customers at speed 1. The service discipline is a hard exclusion rule: no two intersecting RACS can be served simultaneously and service is in the First In First Out order: only the hailstones in contact with the ground melt at speed 1, whereas the other ones are queued; a tagged RACS waits until all RACS arrived before it and intersecting it have fully melted before starting its own melting. We give the evolution equations for this queue. We prove that it is stable for a sufficiently small arrival intensity, provided the typical diameter of the RACS and the typical service time have finite exponential moments. We also discuss the percolation properties of the stationary regime of the RACS in the queue.Comment: 26 page

    Stationary flows and uniqueness of invariant measures

    Get PDF
    In this short paper, we consider a quadruple (Ω,A˚,θ,μ)(\Omega, \AA, \theta, \mu),where A˚\AA is a σ\sigma-algebra of subsets of Ω\Omega, and θ\theta is a measurable bijection from Ω\Omega into itself that preserves the measure μ\mu. For each BA˚B \in \AA, we consider the measure μB\mu_B obtained by taking cycles (excursions) of iterates of θ\theta from BB. We then derive a relation for μB\mu_B that involves the forward and backward hitting times of BB by the trajectory (θnω,nZ)(\theta^n \omega, n \in \Z) at a point ωΩ\omega \in \Omega. Although classical in appearance, its use in obtaining uniqueness of invariant measures of various stochastic models seems to be new. We apply the concept to countable Markov chains and Harris processes

    A New Phase Transition for Local Delays in MANETs

    Get PDF
    We consider Mobile Ad-hoc Network (MANET) with transmitters located according to a Poisson point in the Euclidean plane, slotted Aloha Medium Access (MAC) protocol and the so-called outage scenario, where a successful transmission requires a Signal-to-Interference-and-Noise (SINR) larger than some threshold. We analyze the local delays in such a network, namely the number of times slots required for nodes to transmit a packet to their prescribed next-hop receivers. The analysis depends very much on the receiver scenario and on the variability of the fading. In most cases, each node has finite-mean geometric random delay and thus a positive next hop throughput. However, the spatial (or large population) averaging of these individual finite mean-delays leads to infinite values in several practical cases, including the Rayleigh fading and positive thermal noise case. In some cases it exhibits an interesting phase transition phenomenon where the spatial average is finite when certain model parameters are below a threshold and infinite above. We call this phenomenon, contention phase transition. We argue that the spatial average of the mean local delays is infinite primarily because of the outage logic, where one transmits full packets at time slots when the receiver is covered at the required SINR and where one wastes all the other time slots. This results in the "RESTART" mechanism, which in turn explains why we have infinite spatial average. Adaptive coding offers a nice way of breaking the outage/RESTART logic. We show examples where the average delays are finite in the adaptive coding case, whereas they are infinite in the outage case.Comment: accepted for IEEE Infocom 201

    On Scaling Limits of Power Law Shot-noise Fields

    Full text link
    This article studies the scaling limit of a class of shot-noise fields defined on an independently marked stationary Poisson point process and with a power law response function. Under appropriate conditions, it is shown that the shot-noise field can be scaled suitably to have a α\alpha-stable limit, intensity of the underlying point process goes to infinity. It is also shown that the finite dimensional distributions of the limiting random field have i.i.d. stable random components. We hence propose to call this limte the α\alpha- stable white noise field. Analogous results are also obtained for the extremal shot-noise field which converges to a Fr\'{e}chet white noise field. Finally, these results are applied to the analysis of wireless networks.Comment: 17 pages, Typos are correcte

    The radial spanning tree of a Poisson point process

    Full text link
    We analyze a class of spatial random spanning trees built on a realization of a homogeneous Poisson point process of the plane. This tree has a simple radial structure with the origin as its root. We first use stochastic geometry arguments to analyze local functionals of the random tree such as the distribution of the length of the edges or the mean degree of the vertices. Far away from the origin, these local properties are shown to be close to those of a variant of the directed spanning tree introduced by Bhatt and Roy. We then use the theory of continuous state space Markov chains to analyze some nonlocal properties of the tree, such as the shape and structure of its semi-infinite paths or the shape of the set of its vertices less than kk generations away from the origin. This class of spanning trees has applications in many fields and, in particular, in communications.Comment: Published at http://dx.doi.org/10.1214/105051606000000826 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Expected utility theory, Jeffrey’s decision theory, and the paradoxes

    Get PDF
    In Richard Bradley’s book, Decision Theory with a Human Face, we have selected two themes for discussion. The first is the Bolker-Jeffrey theory of decision, which the book uses throughout as a tool to reorganize the whole field of decision theory, and in particular to evaluate the extent to which expected utility theories may be normatively too demanding. The second theme is the redefinition strategy that can be used to defend EU theories against the Allais and Ellsberg paradoxes, a strategy that the book by and large endorses, and even develops in an original way concerning the Ellsberg paradox. We argue that the BJ theory is too specific to fulfil Bradley’s foundational project and that the redefinition strategy fails in both the Allais and Ellsberg cases. Although we share Bradley’s conclusion that EU theories do not state universal rationality requirements, we reach it not by a comparison with BJ theory, but by a comparison with the non-EU theories that the paradoxes have heuristically suggested

    On the Generating Functionals of a Class of Random Packing Point Processes

    Get PDF
    Consider a symmetrical conflict relationship between the points of a point process. The Mat\'ern type constructions provide a generic way of selecting a subset of this point process which is conflict-free. The simplest one consists in keeping only conflict-free points. There is however a wide class of Mat\'ern type processes based on more elaborate selection rules and providing larger sets of selected points. The general idea being that if a point is discarded because of a given conflict, there is no need to discard other points with which it is also in conflict. The ultimate selection rule within this class is the so called Random Sequential Adsorption, where the cardinality of the sequence of conflicts allowing one to decide whether a given point is selected is not bounded. The present paper provides a sufficient condition on the span of the conflict relationship under which all the above point processes are well defined when the initial point process is Poisson. It then establishes, still in the Poisson case, a set of differential equations satisfied by the probability generating functionals of these Mat\'ern type point processes. Integral equations are also given for the Palm distributions
    corecore