140 research outputs found

    A Configurable Protocol for Quantum Entanglement Distribution to End Nodes

    Full text link
    The primary task of a quantum repeater network is to deliver entanglement among end nodes. Most of existing entanglement distribution protocols do not consider purification, which is thus delegated to an upper layer. This is a major drawback since, once an end-to-end entangled connection (or a portion thereof) is established it cannot be purified if its fidelity (F) does not fall within an interval bounded by Fmin (greater than 0.5) and Fmax (less than 1). In this paper, we propose the Ranked Entanglement Distribution Protocol (REDiP), a connection-oriented protocol that overcomes the above drawback. This result was achieved by including in our protocol two mechanisms for carrying out jointly purification and entanglement swapping. We use simulations to investigate the impact of these mechanisms on the performance of a repeater network, in terms of throughput and fidelity. Moreover, we show how REDiP can easily be configured to implement custom entanglement swapping and purification strategies, including (but not restricted to) those adopted in two recent works.Comment: 6 pages, 6 figures, submitted to IEEE ICC 202

    Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: Recommendations for saturation divers

    Get PDF
    Saturation diving is an occupation that involves prolonged exposure to a confined, hyperoxic, hyperbaric environment. The unique and extreme environment is thought to result in disruption to physiological and metabolic homeostasis, which may impact human health and performance. Appropriate nutritional intake has the potential to alleviate and/or support many of these physiological and metabolic concerns, whilst enhancing health and performance in saturation divers. Therefore, the purpose of this review is to identify the physiological and practical challenges of saturation diving and consequently provide evidence-based nutritional recommendations for saturation divers to promote health and performance within this challenging environment. Saturation diving has a high-energy demand, with an energy intake of between 44 and 52 kcal/kg body mass per day recommended, dependent on intensity and duration of underwater activity. The macronutrient composition of dietary intake is in accordance with the current Institute of Medicine guidelines at 45-65 % and 20-35 % of total energy intake for carbohydrate and fat intake, respectively. A minimum daily protein intake of 1.3 g/kg body mass is recommended to facilitate body composition maintenance. Macronutrient intake between individuals should, however, be dictated by personal preference to support the attainment of an energy balance. A varied diet high in fruit and vegetables is highly recommended for the provision of sufficient micronutrients to support physiological processes, such as vitamin B12 and folate intake to facilitate red blood cell production. Antioxidants, such as vitamin C and E, are also recommended to reduce oxidised molecules, e.g. free radicals, whilst selenium and zinc intake may be beneficial to reinforce endogenous antioxidant reserves. In addition, tailored hydration and carbohydrate fueling strategies for underwater work are also advised

    On the Analysis of Quantum Repeater Chains with Sequential Swaps

    Full text link
    We evaluate the performance of two-way quantum repeater chains with sequential entanglement swapping. Within the analysis we consider memory decoherence, gate imperfections, and imperfect link-level entanglement generation. Our main results include closed-form expressions for the average entanglement fidelity of the generated end-to-end entangled states. We generalize previous findings for the one-shot fidelity analysis and study the case where repeater chains serve end-to-end requests continuously. We provide solutions to the continuous request scenario by combining results from quantum information theory and queuing theory. Finally, we apply the formulas obtained to analyze the impacts of hardware parameters, i.e., coherence times and gate fidelity, and distance on the entanglement fidelity and secret key rate of homogeneous quantum repeater chains.Comment: 10 pages, 5 figure

    Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles

    Get PDF
    Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,10 position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds’ biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298 K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds’ hydrogenated counterparts, the tight relationship between the solutio

    Histamine modulates spinal motoneurons and locomotor circuits

    Get PDF
    Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20μM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation
    corecore