42 research outputs found

    The information entropy of quantum mechanical states

    Full text link
    It is well known that a Shannon based definition of information entropy leads in the classical case to the Boltzmann entropy. It is tempting to regard the Von Neumann entropy as the corresponding quantum mechanical definition. But the latter is problematic from quantum information point of view. Consequently we introduce a new definition of entropy that reflects the inherent uncertainty of quantum mechanical states. We derive for it an explicit expression, and discuss some of its general properties. We distinguish between the minimum uncertainty entropy of pure states, and the excess statistical entropy of mixtures.Comment: 7 pages, 1 figur

    Analysis of airplane boarding via space-time geometry and random matrix theory

    Full text link
    We show that airplane boarding can be asymptotically modeled by 2-dimensional Lorentzian geometry. Boarding time is given by the maximal proper time among curves in the model. Discrepancies between the model and simulation results are closely related to random matrix theory. We then show how such models can be used to explain why some commonly practiced airline boarding policies are ineffective and even detrimental.Comment: 4 page

    Local Entropy Characterization of Correlated Random Microstructures

    Full text link
    A rigorous connection is established between the local porosity entropy introduced by Boger et al. (Physica A 187, 55 (1992)) and the configurational entropy of Andraud et al. (Physica A 207, 208 (1994)). These entropies were introduced as morphological descriptors derived from local volume fluctuations in arbitrary correlated microstructures occuring in porous media, composites or other heterogeneous systems. It is found that the entropy lengths at which the entropies assume an extremum become identical for high enough resolution of the underlying configurations. Several examples of porous and heterogeneous media are given which demonstrate the usefulness and importance of this morphological local entropy concept.Comment: 15 pages. please contact [email protected] and have a look at http://www.ica1.uni-stuttgart.de/ . To appear in Physica

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio

    Longest Increasing Subsequence under Persistent Comparison Errors

    Full text link
    We study the problem of computing a longest increasing subsequence in a sequence SS of nn distinct elements in the presence of persistent comparison errors. In this model, every comparison between two elements can return the wrong result with some fixed (small) probability p p , and comparisons cannot be repeated. Computing the longest increasing subsequence exactly is impossible in this model, therefore, the objective is to identify a subsequence that (i) is indeed increasing and (ii) has a length that approximates the length of the longest increasing subsequence. We present asymptotically tight upper and lower bounds on both the approximation factor and the running time. In particular, we present an algorithm that computes an O(logn)O(\log n)-approximation in time O(nlogn)O(n\log n), with high probability. This approximation relies on the fact that that we can approximately sort nn elements in O(nlogn)O(n\log n) time such that the maximum dislocation of an element is at most O(logn)O(\log n). For the lower bounds, we prove that (i) there is a set of sequences, such that on a sequence picked randomly from this set every algorithm must return an Ω(logn)\Omega(\log n)-approximation with high probability, and (ii) any O(logn)O(\log n)-approximation algorithm for longest increasing subsequence requires Ω(nlogn)\Omega(n \log n) comparisons, even in the absence of errors

    Emergence of spatial structure from causal sets

    Get PDF
    There are numerous indications that a discrete substratum underlies continuum spacetime. Any fundamentally discrete approach to quantum gravity must provide some prescription for how continuum properties emerge from the underlying discreteness. The causal set approach, in which the fundamental relation is based upon causality, finds it easy to reproduce timelike distances, but has a more difficult time with spatial distance, due to the unique combination of Lorentz invariance and discreteness within that approach. We describe a method to deduce spatial distances from a causal set. In addition, we sketch how one might use an important ingredient in deducing spatial distance, the `nn-link', to deduce whether a given causal set is likely to faithfully embed into a continuum spacetime.Comment: 21 pages, 21 figures; proceedings contribution for DICE 2008, to appear in Journal of Physics: Conference Serie

    Average case analysis for batched disk scheduling and increasing subsequences

    Get PDF
    We consider the problem of estimating the tour length and finding approximation algorithms for the asymmetric traveling salesman problem arising from the disk scheduling problem. Given N requests, we show that if the seek function has positive derivative at 0 the tour length is concentrated in probability around the value Cf,pN 1/2 for an explicit constant Cf,p dependent on the seek function and the distribution of requests. For linear seek function we provide even tighter bounds and provide an O(Nlog(N)) time algorithm for finding the optimal tour. The proof uses several results on the size and location of maximal increasing subsequences. To handle more general seek functions we introduce a more general concept of increasing subsequences. we provide order of magnitude estimates on the tour length for a wide class of seek functions with vanishing derivative at 0. For general seek functions we use some geometric information on the location of maximal generalized increasing subsequences obtained via Talagrand’s isoperimetric inequalities to produce a probabilistic 1 + ε approximation algorithm. These results complement the results on guaranteed approximation algorithms for this problem presented in [?]

    On the performance of D-redundant disk systems

    No full text
    corecore