813 research outputs found
Comparative Raman Studies of Sr2RuO4, Sr3Ru2O7 and Sr4Ru3O10
The polarized Raman spectra of layered ruthenates of the Srn+1RunO3n+1
(n=1,2,3) Ruddlesden-Popper series were measured between 10 and 300 K. The
phonon spectra of Sr3Ru2O7 and Sr4Ru3O10 confirmed earlier reports for
correlated rotations of neighboring RuO6 octahedra within double or triple
perovskite blocks. The observed Raman lines of Ag or B1g symmetry were assigned
to particular atomic vibrations by considering the Raman modes in simplified
structures with only one double or triple RuO6 layer per unit cell and by
comparison to the predictions of lattice dynamical calculations for the real
Pban and Pbam structures. Along with discrete phonon lines, a continuum
scattering, presumably of electronic origin, is present in the zz, xx and xy,
but not in the x'y' and zx spectra. Its interference with phonons results in
Fano shape for some of the lines in the xx and xy spectra. The temperature
dependencies of phonon parameters of Sr3Ru2O7 exhibit no anomaly between 10 and
300 K where no magnetic transition occurs. In contrast, two B1g lines in the
spectra of Sr4Ru3O10, corresponding to oxygen vibrations modulating the Ru-O-Ru
bond angle, show noticeable hardening with ferromagnetic ordering at 105 K,
thus indicating strong spin-phonon interaction.Comment: 9 pages, 12 figure
Flow graphs: interweaving dynamics and structure
The behavior of complex systems is determined not only by the topological
organization of their interconnections but also by the dynamical processes
taking place among their constituents. A faithful modeling of the dynamics is
essential because different dynamical processes may be affected very
differently by network topology. A full characterization of such systems thus
requires a formalization that encompasses both aspects simultaneously, rather
than relying only on the topological adjacency matrix. To achieve this, we
introduce the concept of flow graphs, namely weighted networks where dynamical
flows are embedded into the link weights. Flow graphs provide an integrated
representation of the structure and dynamics of the system, which can then be
analyzed with standard tools from network theory. Conversely, a structural
network feature of our choice can also be used as the basis for the
construction of a flow graph that will then encompass a dynamics biased by such
a feature. We illustrate the ideas by focusing on the mathematical properties
of generic linear processes on complex networks that can be represented as
biased random walks and also explore their dual consensus dynamics.Comment: 4 pages, 1 figur
An efficient and principled method for detecting communities in networks
A fundamental problem in the analysis of network data is the detection of
network communities, groups of densely interconnected nodes, which may be
overlapping or disjoint. Here we describe a method for finding overlapping
communities based on a principled statistical approach using generative network
models. We show how the method can be implemented using a fast, closed-form
expectation-maximization algorithm that allows us to analyze networks of
millions of nodes in reasonable running times. We test the method both on
real-world networks and on synthetic benchmarks and find that it gives results
competitive with previous methods. We also show that the same approach can be
used to extract nonoverlapping community divisions via a relaxation method, and
demonstrate that the algorithm is competitively fast and accurate for the
nonoverlapping problem.Comment: 14 pages, 5 figures, 1 tabl
Computational Aspects of Reordering Plans
This article studies the problem of modifying the action ordering of a plan
in order to optimise the plan according to various criteria. One of these
criteria is to make a plan less constrained and the other is to minimize its
parallel execution time. Three candidate definitions are proposed for the first
of these criteria, constituting a sequence of increasing optimality guarantees.
Two of these are based on deordering plans, which means that ordering relations
may only be removed, not added, while the third one uses reordering, where
arbitrary modifications to the ordering are allowed. It is shown that only the
weakest one of the three criteria is tractable to achieve, the other two being
NP-hard and even difficult to approximate. Similarly, optimising the parallel
execution time of a plan is studied both for deordering and reordering of
plans. In the general case, both of these computations are NP-hard. However, it
is shown that optimal deorderings can be computed in polynomial time for a
class of planning languages based on the notions of producers, consumers and
threats, which includes most of the commonly used planning languages. Computing
optimal reorderings can potentially lead to even faster parallel executions,
but this problem remains NP-hard and difficult to approximate even under quite
severe restrictions
Improving the Criminal Justice System\u27s Response to Victimization of Persons With Disabilities
Exploring the potential of geographic information systems to convey the historical geography of battlefields (an Iwo Jima example)
The Role of the Prosectuor in Juvenile Justice: Advocacy in the Courtroom and Leadership in the Community
Mesoscopic structure and social aspects of human mobility
The individual movements of large numbers of people are important in many
contexts, from urban planning to disease spreading. Datasets that capture human
mobility are now available and many interesting features have been discovered,
including the ultra-slow spatial growth of individual mobility. However, the
detailed substructures and spatiotemporal flows of mobility - the sets and
sequences of visited locations - have not been well studied. We show that
individual mobility is dominated by small groups of frequently visited,
dynamically close locations, forming primary "habitats" capturing typical daily
activity, along with subsidiary habitats representing additional travel. These
habitats do not correspond to typical contexts such as home or work. The
temporal evolution of mobility within habitats, which constitutes most motion,
is universal across habitats and exhibits scaling patterns both distinct from
all previous observations and unpredicted by current models. The delay to enter
subsidiary habitats is a primary factor in the spatiotemporal growth of human
travel. Interestingly, habitats correlate with non-mobility dynamics such as
communication activity, implying that habitats may influence processes such as
information spreading and revealing new connections between human mobility and
social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table
(supporting information
The Role of the Prosecutor in Juvenile Justice: Advocacy in the Courtroom and Leadership in the Community
- …
