52 research outputs found
CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum
Carbon nanotubes have been synthesised by catalytic chemical vapour deposition of a H2–CH4 mixture (18 mol% CH4) over (Mg,Co,Mo)O catalysts. The total amount of cobalt and molybdenum has been kept constant at 1 cat% and the proportion of molybdenum with respect to cobalt has been varied from x(Mo) = 0.25–1.0. This variation has important effects on both the yield and the nature (number of walls, straight walls or bamboo-like structures) of the carbon nanotubes. It also has an influence on the purity of the samples (amount of encapsulated metal particles, presence or not of amorphous carbon deposits). For x = 0.25, the nanotubes were mainly double- and triple-walled (inner diameter less than 3 nm); samples prepared from catalysts with higher molybdenum ratios contained larger multi-walled carbon nanotubes (inner diameter up to 9 nm), having up to 13 concentric walls. It is proposed that different growth mechanisms may occur depending on the initial composition of the catalyst
Gram-scale CCVD synthesis of double-walled carbon nanotubes
Synthesis of clean double-walled carbon nanotubes by a catalytic chemical vapour deposition (CCVD) method is reported; the catalyst is a Mg1 2 xCoxO solid solution containing additions of Mo oxide; this MgO-based catalyst can be easily removed, leading to gram-scale amounts of clean carbon nanotubes, 77% of which are double-walled carbon nanotubes
Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering
Double-wall carbon nanotubes are themolecular analogues to coaxial cables. Narrow diameter double-walled carbon nanotubes (DWNTs) have been obtained by catalytic chemical vapour deposition process with high yield and characterized by scanning and transmission electron microscopy. We examine the inelastic light scattering spectrum of mostly DWNTs with internal tubes of subnanometre diameter. We observe particularly narrow radial breathing modes
corresponding to the internal tubes of diameter less than 0.7 nm of double-walled tubes. The D band is found to be strongly helicity dependent and the tangential modes in narrow diameter DWNTs are found to be often down-shifted
High specific surface area carbon nanotubes from catalytic chemical vapor deposition process
A carbon nanotube specimen with a carbon content of 83 wt.% (95 vol.%) and a specific surface area equal to 790 m2/g (corresponding to 948 m2/g of carbon) is prepared by a catalytic chemical vapor deposition method. The nanotubes, 90% of which are single- and double-walled, are individual rather than in bundles. High-resolution electron microscopy shows a diameter distribution in the range 0.8–5 nm and Raman spectroscopy shows a high proportion of tubular carbon. Both techniques reveal a maximum in the inner wall diameter distribution close to 1.2 nm
Discontinuous Tangential Stress in Double Wall Carbon Nanotubes
We have examined the stability of double wall carbon nanotubes under hydrostatic pressures up to 10 GPa. The tangential optical phonon mode observed by inelastic light scattering is sensitive to the inplane stress and splits into a contribution associated with the external and internal tube. While the pressure coefficient from the external tube is the same as in single wall carbon nanotubes, the pressure coefficient from the internal tube is found to be 45% smaller. The phonon band from the external tube broadens considerably with applied pressure in contrast with the phonon band of the internal tube which stays constant. These pressure dependent phonon shifts of the external and internal tubes and the contrasting phonon line broadening are explained by the elastic continuum shell model which takes into account both the continuous radial and discontinuous tangential stress component
Ultraviolet photon absorption in single- and double-wall carbon nanotubes and peapods: Heating-induced phonon line broadening, wall coupling, and transformation
Ultraviolet photon absorption has been used to heat single- and double-wall carbon nanotubes and peapods in vacuum. By increasing the laser intensity up to 500 mW, a downshift and a broadening of the optical phonons are observed corresponding to a temperature of 1000°C. The UV Raman measurements are free of blackbody radiation. We find that the linewidth changes for the G+ and G− bands differ considerably in single-wall carbon nanotubes. This gives evidence that the phonon decay process is different in axial and radial tube directions. We observe the same intrinsic linewidths of graphite (highly oriented pyrolytic graphite) for the G band in single- and double-wall carbon nanotubes. With increasing temperature, the interaction between the walls is modified for double-wall carbon nanotubes. Ultraviolet photon induced transformations of peapods are found to be different on silica and diamond substrates
Specific surface area of carbon nanotubes and bundles of carbon nanotubes
The theoretical external specific surface area of single- and multi-walled carbon nanotubes and of carbon nanotube bundles is calculated as a function of their characteristics (diameter, number of walls, number of nanotubes in a bundle). The results are reported in diagrams and tables useful to correlate the microscopic characteristics and the specific surface area of samples. The calculated values are in good agreement with the microscopic characteristics and the specific surface area
measurements which have been previously reported in the literature. The specific surface area is a macroscopic parameter which can be helpful to adjust the synthesis conditions of carbon nanotubes
Spectroscopic detection of carbon nanotube interaction with amphiphilic molecules in epoxy resin composites
Incorporation of carbon nanotubes into epoxy resin composites has the effect of increasing electrical conductivity at low percolation levels. An amphiphilic molecule such as palmitic acid has been used to increase the surface contact area and improve the dispersion of the carbon nanotube bundles in the prepolymer. The chemical environment of the dispersed nanotubes has been probed using vibrational Raman spectroscopy. Spectroscopic Raman maps, on sample surfaces (60x60 µm2) with ratios of nanotubes to palmitic acid varying from 1:2 to 2:1 by weight, have been recorded to test the uniformity of the dispersion. Substantial spatial inhomogeneities have been observed in the G-band shift and an additional spectral band at 1450 cm-1. The 1450 cm-1 band has been attributed to the CH3 group of the amphiphilic molecules adsorbed onto the nanotube surface. The maps are correlated with the measured electrical conductivity values. The highest conductivity has been observed for the best dispersed nanotubes and nanotubes with the highest degree of interaction
Preparation, Testing and Characterization of Doped TiO2 Active in the Peroxidation of Biomolecules under Visible Light
Doped TiO2 samples using different preparative procedures were synthesized using either urea or thiourea leading to N- or S-doped TiO2. Photocatalytic peroxidation and oxidation (mineralization) of phosphatidylethanolamine (PE) lipid with doped TiO2 were carried out under light irradiation λ > 410 nm. The formation of conjugated double bonds in PE molecules was followed to detect the formation of peroxy radicals (peroxidation index) under light excitation (λ > 410 nm) when doped TiO2 was used. The kinetics of CO2 production was monitored during the mineralization of PE. Colored TiO2 powders were studied in detail by different and complementary physicochemical techniques. The band gap energies of colored TiO2 were determined by diffuse reflectance spectroscopy (DRS). The visible absorption shoulder of TiO2 was observed to follow Urbach\u27s law. The variation of the transient decay after 354 nm laser pulse excitation does not correlate with the different N− and S−TiO2 doping levels introduced by the addition of urea or thiourea. This suggests that the states (recombination centers or traps) introduced by the doping are not effective in varying the decay kinetics within the nanosecond and microsecond time scale. Elemental analysis shows comparable amounts of S- and N-doping of TiO2 when thiourea is used as dopant. X-ray diffraction reveals no rutile in S−TiO2 samples heated to 600 °C, suggesting that the addition of sulfur precludes rutilization during sample crystallization. X-ray photoelectron spectroscopy (XPS) of the S−TiO2 samples confirms the preferential localization of S on the 20 topmost layers of S−TiO2 upon calcination at 500 °C for 2 h
Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes
We report high-pressure Raman light scattering studies up to 10 GPa on double walled carbon nanotubes using two pressure transmitting media. In alcohol, a clear splitting of the G band is observed up to 10 GPa. This splitting is evidence for both discontinuous tangential stress and continuous radial stress. A structural distortion seems to be present at 3 GPa, revealed by a spectroscopic signature at 1480 cm–1. With argon as the pressure transmitting medium, the nanotubes bundles show a transition at 6 GPa which corresponds to a collapse to a flattened structure and removes the splitting. The comparison of the pressure coefficients before the transition for the two pressure transmitting media shows that the ratio of the two coefficients associated with internal and external tubes, is the same but the absolute values are different
- …
