7,701 research outputs found
Structures and materials technology issues for reusable launch vehicles
Projected space missions for both civil and defense needs require significant improvements in structures and materials technology for reusable launch vehicles: reductions in structural weight compared to the Space Shuttle Orbiter of up to 25% or more, a possible factor of 5 or more increase in mission life, increases in maximum use temperature of the external surface, reusable containment of cryogenic hydrogen and oxygen, significant reductions in operational costs, and possibly less lead time between technology readiness and initial operational capability. In addition, there is increasing interest in hypersonic airbreathing propulsion for launch and transmospheric vehicles, and such systems require regeneratively cooled structure. The technology issues are addressed, giving brief assessments of the state-of-the-art and proposed activities to meet the technology requirements in a timely manner
Polarization forces in water deduced from single molecule data
Intermolecular polarization interactions in water are determined using a
minimal atomic multipole model constructed with distributed polarizabilities.
Hydrogen bonding and other properties of water-water interactions are
reproduced to fine detail by only three multipoles , , and
and two polarizabilities and , which
characterize a single water molecule and are deduced from single molecule data.Comment: 4 revtex pages, 3 embedded color PS figure
Quantum kinetic energy densities: An operational approach
We propose and investigate a procedure to measure, at least in principle, a
positive quantum version of the local kinetic energy density. This procedure is
based, under certain idealized limits, on the detection rate of photons emitted
by moving atoms which are excited by a localized laser beam. The same type of
experiment, but in different limits, can also provide other non
positive-definite versions of the kinetic energy density. A connection with
quantum arrival time distributions is discussed.Comment: 13 pages, 1 figure
The local electronic structure of alpha-Li3N
New theoretical and experimental investigation of the occupied and unoccupied
local electronic density of states (DOS) are reported for alpha-Li3N. Band
structure and density functional theory calculations confirm the absence of
covalent bonding character. However, real-space full-multiple-scattering
(RSFMS) calculations of the occupied local DOS finds less extreme nominal
valences than have previously been proposed. Nonresonant inelastic x-ray
scattering (NRIXS), RSFMS calculations, and calculations based on the
Bethe-Salpeter equation are used to characterize the unoccupied electronic
final states local to both the Li and N sites. There is good agreement between
experiment and theory. Throughout the Li 1s near-edge region, both experiment
and theory find strong similarities in the s- and p-type components of the
unoccupied local final density of states projected onto an orbital angular
momentum basis (l-DOS). An unexpected, significant correspondence exists
between the near-edge spectra for the Li 1s and N 1s initial states. We argue
that both spectra are sampling essentially the same final density of states due
to the combination of long core-hole lifetimes, long photoelectron lifetimes,
and the fact that orbital angular momentum is the same for all relevant initial
states. Such considerations may be generically applicable for low atomic number
compounds.Comment: 34 pages, 7 figures, 1 tabl
Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates
I study the evolution of mean field and linear quantum fluctuations in a
toroidal Bose-Einstein condensate, whose interaction strength is quenched from
a finite (repulsive) value to zero. The azimuthal equal-time density-density
correlation function is calculated and shows temporal oscillations with twice
the (final) excitation frequencies after the transition. These oscillations are
a direct consequence of positive and negative frequency mixing during
non-adiabatic evolution. I will argue that a time-resolved measurement of the
equal-time density correlator might be used to calculate the moduli of the
Bogoliubov coefficients and thus the amount of squeezing imposed on a mode,
i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl
Advanced Multilevel Node Separator Algorithms
A node separator of a graph is a subset S of the nodes such that removing S
and its incident edges divides the graph into two disconnected components of
about equal size. In this work, we introduce novel algorithms to find small
node separators in large graphs. With focus on solution quality, we introduce
novel flow-based local search algorithms which are integrated in a multilevel
framework. In addition, we transfer techniques successfully used in the graph
partitioning field. This includes the usage of edge ratings tailored to our
problem to guide the graph coarsening algorithm as well as highly localized
local search and iterated multilevel cycles to improve solution quality even
further. Experiments indicate that flow-based local search algorithms on its
own in a multilevel framework are already highly competitive in terms of
separator quality. Adding additional local search algorithms further improves
solution quality. Our strongest configuration almost always outperforms
competing systems while on average computing 10% and 62% smaller separators
than Metis and Scotch, respectively
Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction
We studied the transition between the antiferromagnetic and the surface
spin-flop phases of a uniaxial antiferromagnetic [Fe(14 \AA)/Cr(11 \AA] superlattice. For external fields applied parallel to the in-plane easy
axis, the layer-by-layer configuration, calculated in the framework of a
mean-field one-dimensional model, was benchmarked against published polarized
neutron reflectivity data. For an in-plane field applied at an angle with the easy axis, magnetometry shows that the magnetization
vanishes at H=0, then increases slowly with increasing . At a critical value
of , a finite jump in is observed for , while a
smooth increase of is found for . A dramatic
increase in the full width at half maximum of the magnetic susceptibility is
observed for . The phase diagram obtained from
micromagnetic calculations displays a first-order transition to a surface
spin-flop phase for low values, while the transition becomes continuous
for greater than a critical angle, . This is in fair agreement with the experimentally observed results.Comment: 24 pages, 7 figure
Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2016
Standards are essential to the advancement of science and technology. In systems and synthetic biology, numerous standards and associated tools have been developed over the last 16 years. This special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards, as well as to provide centralised and easily citable access to them
Exact ground states for a class of one-dimensional frustrated quantum spin models
We have found the exact ground state for two frustrated quantum spin-1/2
models on a linear chain. The first model describes ferromagnet-
antiferromagnet transition point. The singlet state at this point has
double-spiral ordering. The second model is equivalent to special case of the
spin-1/2 ladder. It has non-degenerate singlet ground state with exponentially
decaying spin correlations and there is an energy gap. The exact ground state
wave function of these models is presented in a special recurrent form and
recurrence technics of expectation value calculations is developed.Comment: 16 pages, 3 figures, RevTe
Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces
The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer
fabricated under nearly optimal spring-magnet conditions was determined by
complementary studies of polarized neutron reflectometry and micromagnetic
simulations. We found that at the Fe/Sm-Co interface the magnetic properties
change gradually at the length scale of 8 nm. In this intermixed interfacial
region, the saturation magnetization and magnetic anisotropy are lower and the
exchange stiffness is higher than values estimated from the model based on a
mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields
superior exchange coupling between the Fe and Sm-Co layers, but at the cost of
average magnetization.Comment: 16 pages, 6 figures and 1 tabl
- …
