142 research outputs found
Influence of cementless hip stems on femoral cortical strain pattern depending on their extent of porous coating
The extent of porous coating of cementless total hip stems is held responsible for radiological periprosthetic changes, the rate of thigh pain, and even its long-term success. However, there is only sparse knowledge on how the biomechanical loading conditions of the femur are influenced by the extent of porous coating in the early phase after implantation of a cementless hip stem. Aiming to evaluate the effect of surface structuring on the strain pattern of the femur, we implanted three anatomic hip stems with different extents of porous coating (full, two-thirds proximal, and penguin type) in second-generation composite femora coated with a photoelastic layer. A cortical strain mapping was conducted before and after insertion of the implants under standardized loading conditions considering relevant muscle forces. The results of the statistical analysis of three different implantation sequences proved that composite femora are suitable for repeated measurements within the applied experimental setup. Cortical strain changes including stress-shielding effects medially (-60%) and laterally (-50%) were validated with a cadaver femur. The extent of porous coating had no significant influence on the surface strain pattern for an immediate postoperative situation
Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats
<p>Abstract</p> <p>Background</p> <p>Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs) following inhalation of UfCPs (24 h, 172 μg·m<sup>-3</sup>), to assess whether compromised animals (SHR) exhibit a different response pattern compared to the previously studied healthy rats (WKY).</p> <p>Methods</p> <p>Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP) and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1), blood coagulation (tissue factor, plasminogen activator inhibitor-1), and endothelial function (endothelin-1, and endothelin receptors A and B) were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF).</p> <p>Results</p> <p>Increased BP and heart rate (HR) by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary) and blood (systemic) were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p < 0.05) with endothelin 1 being the maximally induced factor (6-fold; p < 0.05) on the third recovery day in the lungs of UfCPs exposed SHRs; while all of these factors – except hemeoxygenase-1 – were not affected in cardiac tissues. Strikingly, the UfCPs-mediated altered BP is paralleled by the induction of renin-angiotensin system in plasma.</p> <p>Conclusion</p> <p>Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction, stimulation of blood coagulation factors, and inhibition of fibrinolysis. Thus, UfCPs may cause cardiovascular and pulmonary impairment, in the absence of detectable pulmonary inflammation, in individuals suffering from preexisting cardiovascular diseases.</p
Recommended from our members
Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells
Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation
<p>Abstract</p> <p>Background</p> <p>Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.</p> <p>Methods</p> <p>A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and <it>de novo </it>molecular design.</p> <p>Results</p> <p>Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified <it>in silico </it>and tested <it>in vitro</it>; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.</p> <p>Conclusions</p> <p>Gradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for <it>de novo </it>design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.</p
The transcriptional landscape of Shh medulloblastoma
© The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.info:eu-repo/semantics/publishedVersio
Sex differences in oncogenic mutational processes.
Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research
A survey of regulatory recommendations for waivers of in vivo bioequivalence studies of generic products for certain dosage forms by participating regulators and organisations of the International Pharmaceutical Regulators Programme. Part 2
A biowaiver generally refers to the request to waive an in vivo bioequivalence study. A biowaiver may be granted not only based on the Biopharmaceutics Classifications System (BCS) but also for many immediate-release dosage forms based on pre-defined criteria. The current paper summarises the results from a survey of the biowaiver requirements for cutaneous/topical products (topical solutions, gels, suspensions, ointments, and creams), ear/otic and ophthalmic solutions and suspensions, enemas in solution and suspension, and vaginal solid dosage forms and suppositories defined by the participants of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Programme (IPRP). A review of the results from the survey indicates that there is a trend towards convergence when the dosage forms are less complex; however, the most common approach used by each of the participants was a case-by-case approach given that most participants do not have well-defined guidelines to support all possible scenarios. Notwithstanding the differences, disseminating information is the first step towards regulatory convergence regarding biowaivers for certain dosage forms and will be useful for pharmaceutical companies currently developing generic medicinal products for countries represented by IPRP participants
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
- …
