35 research outputs found

    Numerical simulation of organic semiconductor devices with high carrier densities

    Full text link
    We give a full description of the numerical solution of a general charge transport model for doped disordered semiconductors with arbitrary field- and density-dependent mobilities. We propose a suitable scaling scheme and generalize the Gummel iterative procedure, giving both the discretization and linearization of the van Roosbroeck equations for the case when the generalized Einstein relation holds. We show that conventional iterations are unstable for problems with high doping, whereas the generalized scheme converges. The method also offers a significant increase in efficiency when the injection is large and reproduces known results where conventional methods converge.Comment: 9 pages, 3 figure

    Continuum variational and diffusion quantum Monte Carlo calculations

    Full text link
    This topical review describes the methodology of continuum variational and diffusion quantum Monte Carlo calculations. These stochastic methods are based on many-body wave functions and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and well-suited to petascale computers, and the computational cost scales as a polynomial of the number of particles. A guide to the systems and topics which have been investigated using these methods is given. The bulk of the article is devoted to an overview of the basic quantum Monte Carlo methods, the forms and optimisation of wave functions, performing calculations within periodic boundary conditions, using pseudopotentials, excited-state calculations, sources of calculational inaccuracy, and calculating energy differences and forces

    Introduction to the variational and diffusion Monte Carlo methods

    Full text link
    We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems. We also review in detail the more sophisticated DMC algorithm within the fixed-node approximation, introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more accurate approximation to the ground-state wave function. Throughout this review, we discuss the statistical methods used for evaluating expectation values and statistical uncertainties. In particular, we show how to estimate nonlinear functions of expectation values and their statistical uncertainties.Comment: Advances in Quantum Chemistry, 2015, Electron Correlation in Molecules -- ab initio Beyond Gaussian Quantum Chemistry, pp.000

    Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids

    Full text link
    Quantum Monte Carlo approaches such as the diffusion Monte Carlo (DMC) method are among the most accurate many-body methods for extended systems. Their scaling makes them well suited for defect calculations in solids. We review the various approximations needed for DMC calculations of solids and the results of previous DMC calculations for point defects in solids. Finally, we present estimates of how approximations affect the accuracy of calculations for self-interstitial formation energies in silicon and predict DMC values of 4.4(1), 5.1(1) and 4.7(1) eV for the X, T and H interstitial defects, respectively, in a 16(+1)-atom supercell

    Treatment and Outcomes of Clostridioides difficile Infection in Switzerland: A Two-Center Retrospective Cohort Study

    Full text link
    Objectives: Clostridioides difficile infection (CDI) is the leading cause of healthcare-associated diarrhea, often complicated by severe infection and recurrence with increased morbidity and mortality. Data from large cohorts in Switzerland are scarce. We aimed to describe diagnostic assays, treatment, outcomes, and risk factors for CDI in a large cohort of patients in Switzerland. Methods: We conducted a retrospective cohort study of CDI episodes diagnosed in patients from two tertiary care hospitals in Switzerland. During a 3-month follow-up, we used a composite outcome combining clinical cure at day 10, recurrence at week 8, or death, to evaluate a patient's response. Unfavorable outcomes consisted in the occurrence of any of these events. Results: From January 2014 to December 2018, we included 826 hospitalized patients with documented CDI. Overall, 299 patients (36.2%) had a severe infection. Metronidazole was used in 566 patients (83.7%), compared to 82 patients (12.1%) treated with vancomycin and 28 patients (4.1%) treated with fidaxomicin. Overall mortality at week 8 was at 15.3% (112/733). Eighty-six patients (12.7%) presented with clinical failure at day 10, and 78 (14.9%) presented with recurrence within 8 weeks; 269 (39.8%) met the composite outcome of death, clinical failure, or recurrence. The Charlson Comorbidity Index score (p < 0.001), leukocytes > 15 G/L (p = 0.008), and the use of metronidazole (p = 0.012) or vancomycin (p = 0.049) were factors associated with the composite outcome. Conclusions: Our study provides valuable insights on CDI treatment and outcomes in Switzerland, highlights the heterogeneity in practices among centers, and underlines the need for the active monitoring of clinical practices and their impact on clinical outcomes through large multicentric cohorts. Keywords: Clostridioides difficile; mortality; outcomes; predictive factors; recurrence; severe infection; treatment

    Electronic correlation calculations of small molecules with quantum Monte Carlo methods

    No full text

    Electronic correlation calculations of small molecules with quantum Monte Carlo methods

    No full text
    corecore