439 research outputs found
Prospective system analysis of the pre- and early hospital care in severe head injury in Bavaria at a population-based level
Injury during pregnancy and nervous system birth defects: Texas, 1999 to 2003
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100279/1/bdra23143.pd
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 páginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
Structural brain anomalies in patients with FOXG1 syndrome and in Foxg1+/- mice
Objective FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous FOXG1 variants or chromosomal microaberrations in 14q12. The study aimed at assessing the scope of structural cerebral anomalies revealed by neuroimaging to delineate the genotype and neuroimaging phenotype associations. Methods We compiled 34 patients with a heterozygous (likely) pathogenic FOXG1 variant. Qualitative assessment of cerebral anomalies was performed by standardized re-analysis of all 34 MRI data sets. Statistical analysis of genetic, clinical and neuroimaging data were performed. We quantified clinical and neuroimaging phenotypes using severity scores. Telencephalic phenotypes of adult Foxg1+/- mice were examined using immunohistological stainings followed by quantitative evaluation of structural anomalies. Results Characteristic neuroimaging features included corpus callosum anomalies (82%), thickening of the fornix (74%), simplified gyral pattern (56%), enlargement of inner CSF spaces (44%), hypoplasia of basal ganglia (38%), and hypoplasia of frontal lobes (29%). We observed a marked, filiform thinning of the rostrum as recurrent highly typical pattern of corpus callosum anomaly in combination with distinct thickening of the fornix as a characteristic feature. Thickening of the fornices was not reported previously in FOXG1 syndrome. Simplified gyral pattern occurred significantly more frequently in patients with early truncating variants. Higher clinical severity scores were significantly associated with higher neuroimaging severity scores. Modeling of Foxg1 heterozygosity in mouse brain recapitulated the associated abnormal cerebral morphology phenotypes, including the striking enlargement of the fornix. Interpretation Combination of specific corpus callosum anomalies with simplified gyral pattern and hyperplasia of the fornices is highly characteristic for FOXG1 syndrome.Peer reviewe
Oleic acid reversibly opens the blood-brain barrier
This study examined the effect of intracarotid oleic acid infusion on blood-brain barrier permeability. Oleic acid was infused for 30 s at a rate of 6ml/min into the right internal carotid artery at concentrations of 10-6, 10-5, 2 x 10-5 and 5 x 10-5 M. Extensive Evans blue-albumin extravasation was observed 15 min after the administration of 2 x 10-5 M oleic acid. The permeability surface area product for [alpha]-aminoisobutyric acid (AIB), determined 1-11 min following the infusion of oleic acid was increased 10-fold following infusion of 10-5 M oleic acid and 20-fold following the administration of 5 x 10-5 M oleate. The blood-brain barrier opening to AIB proved to be reversible 80-90 min after the infusion of 2 x 10-5 M oleic acid. The possible mechanisms of the oleic acid effect are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29287/1/0000347.pd
The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction
Purpose: Neurodevelopmental disorders (NDD) caused by protein
phosphatase 2A (PP2A) dysfunction have mainly been associated
with de novo variants in PPP2R5D and PPP2CA, and more rarely in
PPP2R1A. Here, we aimed to better understand the latter by
characterizing 30 individuals with de novo and often recurrent
variants in this PP2A scaffolding Aα subunit.
Methods: Most cases were identified through routine clinical
diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.
Results: We describe 30 individuals with 16 different variants in
PPP2R1A, 21 of whom had variants not previously reported. The severity
of developmental delay ranged from mild learning problems to severe
intellectual disability (ID) with or without epilepsy. Common features
were language delay, hypotonia, and hypermobile joints. Macrocephaly
was only seen in individuals without B55α subunit-binding deficit, and
these patients had less severe ID and no seizures. Biochemically more
disruptive variants with impaired B55α but increased striatin binding
were associated with profound ID, epilepsy, corpus callosum hypoplasia,
and sometimes microcephaly.
Conclusion: We significantly expand the phenotypic spectrum of
PPP2R1A-related NDD, revealing a broader clinical presentation of the
patients and that the functional consequences of the variants are more
diverse than previously reported
Clinical Trials in Head Injury
Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd
文献目録
Background: As little information is available on children with non-classic presentations of Pompe disease, we wished to gain knowledge of specific clinical characteristics and genotypes. We included all patients younger than 18 years, who had been evaluated at the Pompe Center in Rotterdam, the Netherlands, between 1975 and 2012, excluding those with the classic-infantile form. None were treated with enzyme replacement therapy at the time of evaluation. We collected information on first symptoms, diagnosis, use of a wheelchair and/or respirator, and enzyme and mutation analysis and assessed muscle strength, pulmonary function, and cardiac parameters. Results: Thirty-one patients participated. Median age at symptom onset was 2.6 years (range 0.5-13y) and at diagnosis 4.0 years. Most first problems were delayed motor development and problems related to limb-girdle weakness. Fatigue, persistent diarrhea and problems in raising the head in supine position were other first complaints. Ten patients were asymptomatic at time of diagnosis. Five of them developed symptoms before inclusion in this study. Over 50 % of all patients had low or absent reflexes, a myopathic face, and scoliosis; 29 % were underweight. Muscle strength of the neck flexors, hip extensors, hip flexors, and shoulder abductors were most frequently reduced. Pulmonary function was decreased in over 48 % of the patients; 2 patients had cardiac hypertrophy. Patients with mutations other than the c.-32-13T > G were overall more severely affected, while 18 out of the 21 patients (86 %) with the c.-32-13T > G/`null' genotype were male. Conclusions: Our study shows that Pompe disease can present with severe mobility and respiratory problems during childhood. Pompe disease should be considered in the differential diagnosis of children with less familiar signs such as disproportional weakness of the neck flexors, unexplained fatigue, persistent diarrhea and unexplained high CK/ASAT/ALAT. Disease presentation appears to be different from adult patients. The majority of affected children with GAA genotype c.-32-13T > G/`null' appeared to be male
Mutations in the Key Autophagy Tethering Factor EPG5 Link Neurodevelopmental and Neurodegenerative Disorders Including Early-Onset Parkinsonism
OBJECTIVE: Autophagy is a fundamental biological pathway with vital roles in intracellular homeostasis. During autophagy, defective cargoes including mitochondria are targeted to lysosomes for clearance and recycling. Recessive truncating variants in the autophagy gene EPG5 have been associated with Vici syndrome, a severe early-onset neurodevelopmental disorder with extensive multisystem involvement. Here, we aimed to delineate the extended, age-dependent EPG5-related disease spectrum.METHODS: We investigated clinical, radiological, and molecular features from the largest cohort of EPG5-related patients identified to date, complemented by experimental investigation of cellular and animal models of EPG5 defects.RESULTS: Through worldwide collaboration, we identified 211 patients, 97 of them previously unpublished, with recessive EPG5 variants. The phenotypic spectrum ranged from antenatally lethal presentations to milder isolated neurodevelopmental disorders. A novel Epg5 knock-in mouse model of a recurrent EPG5 missense variant featured motor impairments and defective autophagy in brain areas particularly relevant for the neurological disorders in milder presentations. Novel age-dependent neurodegenerative manifestations in our cohort included adolescent-onset parkinsonism and dystonia with cognitive decline, and myoclonus. Radiological features suggested an emerging continuum with brain iron accumulation disorders. Patient fibroblasts showed defects in PINK1-Parkin-dependent mitophagic clearance and α-synuclein overexpression, indicating a cellular basis for the observed neurodegenerative phenotypes. In Caenorhabditis elegans, EPG5 knockdown caused motor impairments, defective mitophagic clearance, and changes in mitochondrial respiration comparable to observations in C. elegans knockdown of parkinsonism-related genes.INTERPRETATION: Our findings illustrate a lifetime neurological disease continuum associated with pathogenic EPG5 variants, linking neurodevelopmental and neurodegenerative disorders through the common denominator of defective autophagy. ANN NEUROL 2025 ANN NEUROL 2025.</p
- …
