147 research outputs found

    Infrared diagnostics of the solar magnetic field with Mg I 12 μ\mum lines: forward-model results

    Full text link
    The Mg I 12.32 and 12.22 μ\mum lines are a pair of emission lines that present a great advantage for accurate solar magnetic field measurement. They potentially contribute to the diagnosis of solar atmospheric parameters through their high magnetic sensitivity. The goal of this study is to understand the radiation transfer process of these lines in detail and explore the ability of magnetic field diagnosis in the infrared. We calculated the Stokes profiles and response functions of the two Mg I 12 μ\mum lines based on one-dimensional solar atmospheric models using the Rybicki-Hummer (RH) radiative transfer code. The integration of these profiles with respect to the wavelength was used to generate calibration curves related to the longitudinal and transverse fields. The traditional single-wavelength calibration curve based on the weak-field approximation was also tested to determine if it is suitable for the infrared. The 12.32 μ\mum line is more suitable for a magnetic field diagnosis because its relative emission intensity and polarization signal are stronger than that of the 12.22 μ\mum line. The result from the response functions illustrates that the derived magnetic field and velocity with 12.32 μ\mum line mainly originate from the height of 450 km, while that for the temperature is about 490 km. The calibration curves obtained by the wavelength-integrated method show a nonlinear distribution. For the Mg I 12.32 μ\mum line, the longitudinal (transverse) field can be effectively inferred from Stokes V/I (Q/I and U/I) in the linear range below 600\sim 600 G (3000\sim 3000 G) in quiet regions and below 400\sim 400 G (1200\sim 1200 G) in penumbrae. Within the given linear range, the method is a supplement to the magnetic field calibration when the Zeeman components are incompletely split.Comment: 12 pages, 10 figures, accepted for publication in A&

    Global Coronal Plasma Diagnostics Based on Multi-slit EUV Spectroscopy

    Full text link
    Full-disk spectroscopic observations of the solar corona are highly desired to forecast solar eruptions and their impact on planets and to uncover the origin of solar wind. In this paper, we introduce a new multi-slit design (5 slits) to obtain extreme ultraviolet (EUV) spectra simultaneously. The selected spectrometer wavelength range (184-197 \r{A}) contains several bright EUV lines that can be used for spectral diagnostics. The multi-slit approach offers an unprecedented way to efficiently obtain the global spectral data but the ambiguity from different slits should be resolved. Using a numerical simulation of the global corona, we primarily concentrate on the optimization of the disambiguation process, with the objective of extracting decomposed spectral information of six primary lines. This subsequently facilitates a comprehensive series of plasma diagnostics, including density (Fe XII 195.12/186.89 \r{A}), Doppler velocity (Fe XII 193.51 \r{A}), line width (Fe XII 193.51 \r{A}) and temperature diagnostics (Fe VIII 185.21 \r{A}, Fe X 184.54 \r{A}, Fe XI 188.22 \r{A}, Fe XII 193.51 \r{A}). We find a good agreement between the forward modeling parameters and the inverted results at the initial eruption stage of a coronal mass ejection, indicating the robustness of the decomposition method and its immense potential for global monitoring of the solar corona.Comment: 14 pages, 5 figures, 2 tables. Accepted on 2024 April 18 for publication in ApJ. Published on 2024 May 30. The name of first author changed once from Linyi Chen (simplified Chinese) to Lami Chan (traditional Chinese) but for the same perso

    Observation of two splitting processes in a partial filament eruption on the sun: the role of breakout reconnection

    Full text link
    Partial filament eruptions have often been observed, however, the physical mechanisms that lead to filament splitting are not yet fully understood. In this study, we present a unique event of a partial filament eruption that undergoes two distinct splitting processes. The first process involves vertical splitting and is accompanied by brightenings inside the filament, which may result from internal magentic reconnection within the filament. Following the first splitting process, the filament is separated into an upper part and a lower part. Subsequently, the upper part undergoes a second splitting, which is accompanied by a coronal blowout jet. An extrapolation of the coronal magnetic field reveals a hyperbolic flux tube structure above the filament, indicating the occurrence of breakout reconnection that reduces the constraning field above. Consequently, the filament is lifted up, but at a nonuniform speed. The high-speed part reaches the breakout current sheet to generate the blowout jet, while the low-speed part falls back to the solar surface, resulting in the second splitting. In addition, continuous brightenings are observed along the flare ribbons, suggesting the occurrence of slipping reconnection process. This study presents, for the first time, the unambiguous observation of a two-stage filament splitting process, advancing our understanding of the complex dynamics of solar eruptions.Comment: 12 pages, 8 figure

    Heating of quiescent coronal loops caused by nearby eruptions observed with the Solar Dynamics Observatory and the Solar Upper Transition Region Imager

    Full text link
    How structures, e.g., magnetic loops, in the upper atmosphere, i.e., the transition region and corona, are heated and sustained is one of the major unresolved issues in solar and stellar physics. Various theoretical and observational studies on the heating of coronal loops have been undertaken. The heating of quiescent loops caused by eruptions is, however, rarely observed. In this study, employing data from the Solar Dynamics Observatory (SDO) and Solar Upper Transition Region Imager (SUTRI), we report the heating of quiescent loops associated with nearby eruptions. In active regions (ARs) 13092 and 13093, a long filament and a short filament, and their overlying loops are observed on 2022 September 4. In AR 13093, a warm channel erupted toward the northeast, whose material moved along its axis toward the northwest under the long filament, turned to the west above the long filament, and divided into two branches falling to the solar surface. Subsequently, the short filament erupted toward the southeast. Associated with these two eruptions, the quiescent loops overlying the long filament appeared in SDO/Atmospheric Imaging Assembly (AIA) high-temperature images, indicating the heating of loops. During the heating, signature of magnetic reconnection between loops is identified, including the inflowing motions of loops, and the formation of X-type structures and newly reconnected loops. The heated loops then cooled down. They appeared sequentially in AIA and SUTRI lower-temperature images. All the results suggest that the quiescent loops are heated by reconnection between loops caused by the nearby warm channel and filament eruptions.Comment: 20 pages, 12 figures, accepted for publication in Ap

    Traveling kink oscillations of coronal loops launched by a solar flare

    Full text link
    We investigate the traveling kink oscillation triggered by a solar flare on 2022 September 29. The observational data is mainly measured by the Solar Upper Transition Region Imager (SUTRI), the Atmospheric Imaging Assembly (AIA), and the Spectrometer/Telescope for Imaging X-rays (STIX). The transverse oscillations with apparent decaying in amplitudes, which are nearly perpendicular to the oscillating loop, are observed in passbands of SUTRI 465 A, AIA 171 A, and 193 A. The decaying oscillation is launched by a solar flare erupted closely to one footpoint of coronal loops, and then it propagates along several loops. Next, the traveling kink wave is evolved to a standing kink oscillation. To the best of our knowledge, this is the first report of the evolution of a traveling kink pulse to a standing kink wave along coronal loops. The standing kink oscillation along one coronal loop has a similar period of about 6.3 minutes at multiple wavelengths, and the decaying time is estimated to about 9.6-10.6 minutes. Finally, two dominant periods of 5.1 minutes and 2.0 minutes are detected in another oscillating loop, suggesting the coexistence of the fundamental and third harmonics.Comment: 8 pages, 8 figures, accepted by A&

    Simultaneous detection of flare-associated kink oscillations and extreme-ultraviolet waves

    Full text link
    Kink oscillations, which are frequently observed in coronal loops and prominences, are often accompanied by extreme-ultraviolet (EUV) waves. However, much more needs to be explored regarding the causal relationships between kink oscillations and EUV waves. In this article, we report the simultaneous detection of kink oscillations and EUV waves that are both associated with an X2.1 flare on 2023 March 03 (SOL2023-03-03T17:39). The kink oscillations, which are almost perpendicular to the axes of loop-like structures, are observed in three coronal loops and one prominence. One short loop shows in-phase oscillation within the same period of 5.2 minutes at three positions. This oscillation could be triggered by the pushing of an expanding loop and interpreted as the standing kink wave. Time lags are found between the kink oscillations of the short loop and two long loops, suggesting that the kink wave travels in different loops. The kink oscillations of one long loop and the prominence are possibly driven by the disturbance of the CME, and that of another long loop might be attributed to the interaction of the EUV wave. The onset time of the kink oscillation of the short loop is nearly same as the beginning of an EUV wave. This fact demonstrates that they are almost simultaneous. The EUV wave is most likely excited by the expanding loop structure and shows two components. The leading component is a fast coronal wave, and the trailing one could be due to the stretching magnetic field lines.Comment: accepted for publication in the Science China Technological Science
    corecore